Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Cell Biol Int ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961533

RESUMEN

The senescence-associated protein p16INK4A acts as a limiter element in cell-cycle progression. The loss of p16INK4A function is causally related to cellular immortalization. The increase in p16INK4A levels with advancing age was demonstrated in melanocytes. However, the characteristic difference between young and senescent melanocytes affecting immortalization of melanocytes remains unclear. In this study, we generated 10 different cell lines in total from newborn (NB) and adult (AD) primary normal human epidermal melanocytes (NHEM) using four different methods, transduction of CDK4R24C and cyclin D1 (K4D), K4D with TERT (K4DT), SV40 T-antigen (SV40T), and HPV16 E6 and E7 (E6/E7) and performed whole transcriptome sequencing analysis (RNA-Seq) to elucidate the differences of genome-wide expression profiles among cell lines. The analysis data revealed distinct differences in expression pattern between cell lines from NB and AD although no distinct biological differences were detected in analyses such as comparison of cell morphology, evaluation of cell proliferation, and cell cycle profiles. This study may provide useful in vitro models to benefit the understanding of skin-related diseases.

2.
Cell Biochem Funct ; 42(4): e4064, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807466

RESUMEN

Human dental pulp stem cells are a potentially useful resource for cell-based therapies and tissue repair in dental and medical applications. However, the primary culture of isolated dental pulp stem cells has notably been limited. A major requirement of an ideal human dental pulp stem cell culture system is the preservation of efficient proliferation and innate stemness over prolonged passaging, while also ensuring ease of handling through standard, user-friendly culture methods. In this study, we have engineered a novel human dental pulp stem cell line, distinguished by the constitutive expression of telomerase reverse transcriptase (TERT), and the conditional expression of the R24C mutant cyclin-dependent kinase 4 (CDK4R24C) and Cyclin D1. We have named this cell line Tet-off K4DT hDPSCs. Furthermore, we have conducted a comprehensive comparative analysis of their biological attributes in relation to a previously immortalized human dental pulp stem cells, hDPSC-K4DT, which were immortalized by the constitutive expression of CDK4R24C, Cyclin D1 and TERT. In Tet-off K4DT cells, the expression of the K4D genes can be precisely suppressed by the inclusion of doxycycline. Remarkably, Tet-off K4DT cells demonstrated an extended cellular lifespan, increased proliferative capacity, and enhanced osteogenic differentiation potential when compared to K4DT cells. Moreover, Tet-off K4DT cells had no observable genomic aberrations and also displayed a sustained expression of stem cell markers even at relatively advanced passages. Taken together, the establishment of this new cell line holds immense promise as powerful experimental tool for both fundamental and applied research involving dental pulp stem cells.


Asunto(s)
Proliferación Celular , Quinasa 4 Dependiente de la Ciclina , Pulpa Dental , Doxiciclina , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Proliferación Celular/efectos de los fármacos , Doxiciclina/farmacología , Células Madre/metabolismo , Células Madre/citología , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Telomerasa/metabolismo , Telomerasa/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Diferenciación Celular/efectos de los fármacos , Células Cultivadas
3.
FEBS Open Bio ; 14(4): 598-612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373743

RESUMEN

The Egyptian Rousettus bat (Rousettus aegyptiacus) is a common fruit bat species that is distributed mainly in Africa and the Middle East. Bats serve as reservoir hosts for numerous pathogens. Human activities, such as hunting bats for food, managing vermin, and causing habitat loss, elevate the likelihood of transmission of bat pathogens to humans and other animals. Consequently, bat cell lines play a crucial role as research materials for investigating viral pathogens. However, the inherent limitation of finite cell division in primary cells necessitates the use of immortalized cells derived from various bat tissues. Herein, we successfully established six fibroblast cell lines derived from an infant bat heart and lungs and an elderly bat heart. Three of the six cell lines, called K4DT cells, were transduced by a combination of cell cycle regulators, mutant cyclin-dependent kinase 4, cyclin D1, and human telomerase reverse transcriptase. The other three cell lines, named SV40 cells, were transfected with simian virus 40 large T antigen. Transgene protein expression was detected in the transduced cells. All three K4DT cell lines and one lung-derived SV40 cell line were virtually immortalized and nearly maintained the normal diploid karyotypes. However, the two other heart-derived SV40 cell lines had aberrant karyotypes and the young bat-derived cell line stopped proliferating at approximately 40 population doublings. These bat cell lines are valuable for studying pathogen genomics and biology.


Asunto(s)
Quirópteros , Animales , Humanos , Anciano , Egipto , Línea Celular
4.
Adv Biol (Weinh) ; 8(3): e2300227, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38087887

RESUMEN

Primary cultured cells cannot proliferate infinite. The overcoming of this limit can be classified as immortalization. Bypass of p16 senescence protein induces efficient immortalization various types of mammalians is previously reported. However, the Cetacea species is not known. Here, that common minke whale-derived cells can be immortalized with a combination of human genes, mutant cyclin-dependent kinase 4 (CDK4R24C ), cyclin D1, and Telomerase Reverse Transcriptase (TERT) is reported. These results indicate that the function of cell cycle regulators in premature senescence is evolutionarily conserved. This study describes the conserved roles of cell cycle regulators in the immortalization of cells from humans to Cetacea species. Furthermore, using RNA-seq based on next-generation sequencing, the gene expression profiles of immortalized cells are compared with parental cells as well as those immortalized with SV40 large T antigen, which is once a popular method for cellular immortalization. The profiling results show that newly established common minke-whale-derived immortaliozed cells have completely different profiles from SV40 cells. This result indicates that the expression of mutant CDK4, cyclin D1, and TERT enables to establish immortalized cell lines with different biological nature from SV40 expressing cells.


Asunto(s)
Ciclina D1 , Ballena Minke , Animales , Humanos , Ciclina D1/genética , Línea Celular , Genes cdc , Ciclo Celular/genética
5.
Biochim Biophys Acta Gen Subj ; 1868(1): 130506, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949151

RESUMEN

BACKGROUND: Ischemia and reperfusion (I/R) injury exacerbate the prognosis of ischemic diseases. The cause of this exacerbation is partly a mitochondrial cell death pathway. Mitochondrial calpain-5 is proteolyzed/autolyzed under endoplasmic reticulum stress, resulting in inflammatory caspase-4 activation. However, the role of calpain-5 in I/R injury remains unclear. We hypothesized that calpain-5 is involved in ischemic brain disease. METHODS: Mitochondria from C57BL/6J mice were extracted via centrifugation with/without proteinase K treatment. The expression and proteolysis/autolysis of calpain-5 were determined using western blotting. The mouse and human brains with I/R injury were analyzed using hematoxylin and eosin staining and immunohistochemistry. HT22 cells were treated with tunicamycin and CAPN5 siRNA. RESULTS: Calpain-5 was expressed in the mitochondria of mouse tissues. Mitochondrial calpain-5 in mouse brains was responsive to calcium earlier than cytosolic calpain-5 in vitro calcium assays and in vivo bilateral common carotid artery occlusion model mice. Immunohistochemistry revealed that neurons were positive for calpain-5 in the normal brains of mice and humans. The expression of calpain-5 was increased in reactive astrocytes at human infarction sites. The knockdown of calpain-5 suppressed of cleaved caspase-11. CONCLUSIONS: The neurons of human and mouse brains express calpain-5, which is proteolyzed/autolyzed in the mitochondria in the early stage of I/R injury and upregulated in reactive astrocytes in the end-stage. GENERAL SIGNIFICANCE: Our results provide a comprehensive understanding of the mechanisms underlying I/R injury. Targeting the expression or activity of mitochondrial calpain-5 may suppress the inflammation during I/R injuries such as cerebrovascular diseases.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Ratones , Humanos , Calpaína/genética , Calpaína/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Isquemia Encefálica/genética , Caspasas
6.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003623

RESUMEN

Electroretinograms (ERGs) are often used to evaluate retinal function. However, assessing local retinal function can be challenging; therefore, photopic and scotopic ERGs are used to record whole-retinal function. This study evaluated focal retinal function in rats exposed to continuous light using a multifocal ERG (mfERG) system. The rats were exposed to 1000 lux of fluorescent light for 24 h to induce photoreceptor degeneration. After light exposure, the rats were reared under cyclic light conditions (12 h: 5 lux, 12 h: dark). Photopic and multifocal ERGs and single-flash and multifocal visual evoked potentials (mfVEPs) were recorded 7 days after light exposure. Fourteen days following light exposure, paraffin-embedded sections were prepared from the eyes for histological evaluation. The ERG and VEP responses dramatically decreased after 24 h of light exposure, and retinal area-dependent decreases were observed in mfERGs and mfVEPs. Histological assessment revealed severe damage to the superior retina and less damage to the inferior retina. Considering the recorded visual angles of mfERGs and mfVEPs, the degenerated area shown on the histological examinations correlates well with the responses from multifocal recordings.


Asunto(s)
Potenciales Evocados Visuales , Degeneración Retiniana , Ratas , Animales , Retina/fisiología , Electrorretinografía , Degeneración Retiniana/etiología
7.
PLoS One ; 18(8): e0290436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37607189

RESUMEN

The Okinawa rail is endemic to Okinawa Island and is categorized as an endangered animal. In this study, we focused on innate immunity because it is the first line of host defense. In particular, signals recognizing foreign RNA (e.g., viruses) are important for host defense because they activate the host immune system. The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) families (RIG-I, MDA5, and LGP2) are sensors that activate innate immunity. Therefore, we analyzed these functions in the Okinawa rail using genomic and cellular analyses of fibroblasts. Fibroblasts can be obtained from dead individuals, allowing these cells to be obtained from dead individuals, which is particularly useful for endangered species. The MDA5 gene of Okinawa rail was sequenced using the Sanger method following PCR amplification and extraction of the amplified sequence from agarose gel. Additionally, mRNA expression analysis of cultured fibroblasts exposed to poly I:C was done. The MDA5 gene was found to be a mutated nonfunctional gene in the Okinawa rail. The mRNA expression rates of inflammatory cytokine genes type I IFN, and Mx1 were slower in Okinawa rail than in chicken cultured fibroblasts. Similar to the mRNA expression results, cell number and live cell ratio also slowly decreased in the Okinawa rail compared with chicken cultured fibroblasts, indicating that the innate immune reaction differs between chicken and the Okinawa rail. To the best of our knowledge, this is the first experimental evaluation of the loss of function of the Okinawa rail innate immune genes. In conclusion, our results provide a basis for conservation strategies for the endangered Okinawa rail.


Asunto(s)
Pollos , Fibroblastos , Animales , Pollos/genética , Recuento de Células , Inmunidad Innata/genética , ARN Mensajero
8.
BBA Adv ; 3: 100092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250100

RESUMEN

Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.

9.
Cell Biol Int ; 47(9): 1491-1501, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37178391

RESUMEN

Sheep are important domestic animals for the production of wool and meat. Although numerous cultured cell lines from humans and mice have been established, the number of cell lines derived from sheep is limited. To overcome this issue, the efficient establishment of a sheep-derived cell line and its biological characterization is reported. Mutant cyclin-dependent kinase 4, cyclin D1, and telomerase reverse transcriptase were introduced into sheep muscle-derived cells in an attempt to immortalize primary cells using the K4DT method. Furthermore, the SV40 large T oncogene was introduced into the cells. The successful immortalization of sheep muscle-derived fibroblasts was shown using the K4DT method or SV40 large T antigen. Furthermore, the expression profile of established cells showed close biological characteristics of ear-derived fibroblasts. This study provides a useful cellular resource for veterinary medicine and cell biology.


Asunto(s)
Telomerasa , Transcriptoma , Humanos , Animales , Ratones , Ovinos , Línea Celular , Ciclo Celular , Telomerasa/genética , Telomerasa/metabolismo , Fibroblastos/metabolismo
10.
PLoS One ; 18(5): e0285356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37141289

RESUMEN

There is still much room for development in pluripotent stem cell research on avian species compared to human stem cell studies. Neural cells are useful for the evaluation of risk assessment of infectious diseases since several avian species die of encephalitis derived from infectious diseases. In this study, we attempted to develop induced pluripotent stem cells (iPSCs) technology for avian species by forming organoids containing neural-like cells. In our previous study, we established two types iPSCs from chicken somatic cells, the first is iPSCs with PB-R6F reprogramming vector and the second is iPSCs with PB-TAD-7F reprogramming vector. In this study, we first compared the nature of these two cell types using RNA-seq analysis. The total gene expression of iPSCs with PB-TAD-7F was closer to that of chicken ESCs than that of iPSCs with PB-R6F; therefore, we used iPSCs with PB-TAD-7F to form organoids containing neural-like cells. We successfully established organoids containing neural-like cells from iPSCs using PB-TAD-7F. Furthermore, our organoids responded to poly:IC through the RIG-I-like receptor (RLR) family. In this study, we developed iPSCs technology for avian species via organoid formation. In the future, organoids containing neural-like cells from avian iPSCs can develop as a new evaluation tool for infectious disease risk in avian species, including endangered avian species.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Pollos , Organoides/metabolismo , Neuronas/metabolismo , Diferenciación Celular/genética
12.
In Vitro Cell Dev Biol Anim ; 59(3): 224-233, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36971906

RESUMEN

The Ryukyu long-furred rat is an endangered species confined to the southernmost three small islands of Japan (Amami-Oshima, Tokunoshima, and Okinawa). Its population is rapidly decreasing because of roadkill, deforestation, and feral animals. To date, its genomic and biological information are poorly understood. In this study, we successfully immortalized Ryukyu long-furred rat cells by expressing a combination of cell cycle regulators, mutant cyclin-dependent kinase 4 (CDK4R24C) and cyclin D1, together with telomerase reverse transcriptase or an oncogenic protein, the Simian Virus large T antigen. The cell cycle distribution, telomerase enzymatic activity, and karyotype of these two immortalized cell lines were analyzed. The karyotype of the former cell line immortalized with cell cycle regulators and telomerase reverse transcriptase retained the nature of the primary cells, while that of the latter cell line immortalized with the Simian Virus large T antigen had many aberrant chromosomes. These immortalized cells would be valuable for studying the genomics and biology of Ryukyu long-furred rats.


Asunto(s)
Telomerasa , Ratas , Animales , Telomerasa/genética , Telomerasa/metabolismo , División Celular , Ciclo Celular , Línea Celular , Antígenos Virales de Tumores/genética
13.
Anal Biochem ; 669: 115119, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958509

RESUMEN

Lentivirus is an efficient gene transfer system that is widely used in basic science. We aimed to improve viral titer by applying an ultra-expression vectors to lentiviral packaging. Application of the ultra-expression vectors increased biological titer 4 times for standard preparation. We also evaluated the efficacy of the ultra-expression vectors to relatively longer insert fragments, such as CSII-CMV-CNROE containing 5 genes in multiple cloning sites. Packaging of the ultra-expression vectors showed 3.5 times higher biological titer compared with the original method. Our improved packaging system could be applied to lentivirus to produce higher titers.


Asunto(s)
Vectores Genéticos , Lentivirus , Lentivirus/genética , Lentivirus/metabolismo , Transducción Genética , Vectores Genéticos/genética , Secuencia de Bases
14.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902480

RESUMEN

Channelrhodopsins have been utilized in gene therapy to restore vision in patients with retinitis pigmentosa and their channel kinetics are an important factor to consider in such applications. We investigated the channel kinetics of ComV1 variants with different amino acid residues at the 172nd position. Patch clamp methods were used to record the photocurrents induced by stimuli from diodes in HEK293 cells transfected with plasmid vectors. The channel kinetics (τon and τoff) were considerably altered by the replacement of the 172nd amino acid and was dependent on the amino acid characteristics. The size of amino acids at this position correlated with τon and decay, whereas the solubility correlated with τon and τoff. Molecular dynamic simulation indicated that the ion tunnel constructed by H172, E121, and R306 widened due to H172A variant, whereas the interaction between A172 and the surrounding amino acids weakened compared with H172. The bottleneck radius of the ion gate constructed with the 172nd amino acid affected the photocurrent and channel kinetics. The 172nd amino acid in ComV1 is a key residue for determining channel kinetics as its properties alter the radius of the ion gate. Our findings can be used to improve the channel kinetics of channelrhodopsins.


Asunto(s)
Aminoácidos , Luz , Humanos , Channelrhodopsins/genética , Células HEK293 , Cinética
15.
Sci Data ; 9(1): 731, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446804

RESUMEN

Testosterone-related steroid hormones are associated with various types of diseases, including prostate cancer and androgenetic alopecia (AGA). The testosterone or dihydroxy testosterone (DHT) circulates through the blood, binds to the androgen receptor (AR) in the cytoplasm, and finally enters the nucleus to activate downstream target genes. We previously found that immortalized dermal papilla cells (DPCs) lost AR expression, which may be explained by the repeated cell passages of DPCs. To compensate for the AR expression, DPCs that express AR exogenously were established. In this study, we performed an RNA-Seq analysis of the AR-expressing and non-AR-expressing DPCs in the presence or absence of DHT to identify the downstream target genes regulated by AR signalling. Furthermore, we treated DPCs with minoxidil sulphate, which has the potential to treat AGA. This is the first comprehensive analysis to identify the downstream genes involved in testosterone signalling in DPCs. Our manuscript provides high-priority data for the discovery of molecular targets for prostate cancer and AGA.


Asunto(s)
Dermis , Testosterona , Transcriptoma , Humanos , Masculino , RNA-Seq , Transducción de Señal
16.
Commun Biol ; 5(1): 1049, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280684

RESUMEN

The number of endangered avian-related species increase in Japan recently. The application of new technologies, such as induced pluripotent stem cells (iPSCs), may contribute to the recovery of the decreasing numbers of endangered animals and conservation of genetic resources. We established novel iPSCs from three endangered avian species (Okinawa rail, Japanese ptarmigan, and Blakiston's fish owl) with seven reprogramming factors (M3O, Sox2, Klf4, c-Myc, Nanog, Lin28, and Klf2). The iPSCs are pluripotency markers and express pluripotency-related genes and differentiated into three germ layers in vivo and in vitro. These three endangered avian iPSCs displayed different cellular characteristics even though the same reprogramming factors use. Japanese ptarmigan-derived iPSCs have different biological characteristics from those observed in other avian-derived iPSCs. Japanese ptarmigan iPSCs contributed to chimeras part in chicken embryos. To the best of our knowledge, our findings provide the first evidence of the potential value of iPSCs as a resource for endangered avian species conservation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Embrión de Pollo , Animales , Reprogramación Celular , Especies en Peligro de Extinción , Diferenciación Celular/genética , Factores de Transcripción/genética
17.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955937

RESUMEN

Age-related macular degeneration is a progressive retinal disease that is associated with factors such as oxidative stress and inflammation. In this study, we evaluated the protective effects of SIG-1451, a non-steroidal anti-inflammatory compound developed for treating atopic dermatitis and known to inhibit Toll-like receptor 4, in light-induced photoreceptor degeneration. SIG-1451 was intraperitoneally injected into rats once per day before exposure to 1000 lx light for 24 h; one day later, optical coherence tomography showed a decrease in retinal thickness, and electroretinogram (ERG) amplitude was also found to have decreased 3 d after light exposure. Moreover, SIG-1451 partially protected against this decrease in retinal thickness and increase in ERG amplitude. One day after light exposure, upregulation of inflammatory response-related genes was observed, and SIG-1451 was found to inhibit this upregulation. Iba-1, a microglial marker, was suppressed in SIG-1451-injected rats. To investigate the molecular mechanism underlying these effects, we used lipopolysaccharide (LPS)-stimulated rat immortalised Müller cells. The upregulation of C-C motif chemokine 2 by LPS stimulation was significantly inhibited by SIG-1451 treatment, and Western blot analysis revealed a decrease in phosphorylated I-κB levels. These results indicate that SIG-1451 indirectly protects photoreceptor cells by attenuating light damage progression, by affecting the inflammatory responses.


Asunto(s)
Lipopolisacáridos , Degeneración Retiniana , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Electrorretinografía , Luz , Lipopolisacáridos/farmacología , Células Fotorreceptoras de Vertebrados , Ratas , Retina , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/etiología
18.
Tissue Cell ; 77: 101848, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35714414

RESUMEN

Common marmosets are non-human primate models used in biomedical research and genome editing technology. This study aimed to establish cell lines from common marmosets and evaluate their characteristics. We obtained normal fibroblasts derived from muscle tissues of two common marmosets and immortalized them with the introduction of a mutat form of cyclin-dependent kinase 4 (CDK4R24C), Cyclin D1, and telomere reverse transcriptase (TERT) using the piggyBac transposon. Compared to parental cells, the immortalized cell lines (named K4DT cells) showed telomerase activity and an accelerated cell proliferation rate. To our knowledge, this is the first study describing the successful establishment of immortalized common marmoset-derived fibroblasts using piggyBac transposition of CDK4R24C, Cyclin D1, and TERT. Our generated cell lines might be a beneficial tool for future studies on disease modeling and targeted gene therapies.


Asunto(s)
Callithrix , Telomerasa , Animales , Callithrix/metabolismo , Ciclo Celular/genética , Línea Celular , Ciclina D1/metabolismo , Fibroblastos/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
19.
In Vitro Cell Dev Biol Anim ; 58(4): 289-294, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35469046

RESUMEN

Glutamate neurotoxicity is involved in neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Excess glutamate causes caspase-independent programmed cell death via oxidative stress and calcium influx. Our previous study showed that calpain-1 localizes to both the cytoplasm and mitochondria, where apoptosis-inducing factor (AIF) is cleaved by calpain-1 and translocates to the nucleus to induce DNA fragmentation. The autoinhibitory region of calpain-1 conjugated with the cell-penetrating peptide HIV1-Tat (namely Tat-µCL) specifically prevents the activity of mitochondrial calpain-1 and attenuates neuronal cell death in animal models of retinitis pigmentosa, as well as glutamate-induced cell death in mouse hippocampal HT22 cells. In the present study, we constructed a lentiviral vector expressing the Tat-µCL peptide and evaluated its protective effect against glutamate-induced cell death in HT22 cells. Lentiviral transduction with Tat-µCL significantly suppressed glutamate-induced nuclear translocation of AIF and DNA fragmentation. The findings of the present study suggest that the stable expression of Tat-µCL may be a potential gene therapy modality for neurodegenerative diseases.


Asunto(s)
Calpaína , Ácido Glutámico , Animales , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Calpaína/genética , Calpaína/metabolismo , Muerte Celular , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Hipocampo/metabolismo , Ratones , Estrés Oxidativo , Péptidos/metabolismo
20.
Cytotechnology ; 74(1): 181-192, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35185293

RESUMEN

Dog is the first animal that was established as a close partner of human beings. Based on the vast genetic diversity and breeding, dogs exhibit unique genetic evolution and diversity from Chihuahua to St. Bernard. The safety tests of the pharmacological products also included domestic dogs as the test subjects. Although the safety confirmation test of chemicals for human use is important, the welfare of experimental animals requires special consideration. In this study, we cultured domestic dog-derived primary fibroblasts isolated from their muscle tissues. Furthermore, we successfully immortalized them through lentivirus-mediated gene transfer of mutant cyclin-dependent kinase 4 (CDK4), cyclin D1, and telomere reverse transcriptase (TERT). We further demonstrated that the established immortalized domestic dog-derived fibroblasts retained the characteristics of the original parental cells. These cells might act a suitable in vivo model system to replace the implication of animals for evaluating the potential toxicity of pharmacological chemicals. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10616-021-00504-0.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA