Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 297(2): 100986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298015

RESUMEN

Radial migration during cortical development is required for formation of the six-layered structure of the mammalian cortex. Defective migration of neurons is linked to several developmental disorders such as autism and schizophrenia. A unique swollen structure called the dilation is formed in migrating neurons and is required for movement of the centrosome and nucleus. However, the detailed molecular mechanism by which this dilation forms is unclear. We report that CAMDI, a gene whose deletion is associated with psychiatric behavior, is degraded by cell division cycle protein 20 (Cdc20)-anaphase-promoting complex/cyclosome (APC/C) cell-cycle machinery after centrosome migration into the dilation in mouse brain development. We also show that CAMDI is restabilized in the dilation until the centrosome enters the dilation, at which point it is once again immediately destabilized. CAMDI degradation is carried out by binding to Cdc20-APC/C via the destruction box degron of CAMDI. CAMDI destruction box mutant overexpression inhibits dilation formation and neuronal cell migration via maintaining the stabilized state of CAMDI. These results indicate that CAMDI is a substrate of the Cdc20-APC/C system and that the oscillatory regulation of CAMDI protein correlates with dilation formation for proper cortical migration.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Encéfalo/crecimiento & desarrollo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Trastornos Mentales/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Centrosoma/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Técnicas de Silenciamiento del Gen/métodos , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Modelos Animales , Neuronas/metabolismo
2.
J Biol Chem ; 296: 100620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33811862

RESUMEN

Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.


Asunto(s)
Giro Dentado/patología , GTP Fosfohidrolasas/fisiología , Células-Madre Neurales/patología , Neurogénesis , Neuronas/patología , Prosencéfalo/patología , Agitación Psicomotora/patología , Animales , Giro Dentado/metabolismo , Conducta Exploratoria , Femenino , Masculino , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Agitación Psicomotora/etiología , Agitación Psicomotora/metabolismo
3.
J Biochem ; 168(3): 305-312, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302394

RESUMEN

In mitochondrial disorders, short stature and growth failure are common symptoms, but their underlying mechanism remains unknown. In this study, we examined the cause of growth failure of mice induced by nestin promoter-driven knockout of the mitochondrial ubiquitin ligase MITOL (MARCH5), a key regulator of mitochondrial function. MITOL-knockout mice have congenital hypoplasia of the anterior pituitary caused by decreased expression of pituitary transcript factor 1 (Pit1). Consistently, both mRNA levels of growth hormone (GH) and prolactin levels were markedly decreased in the anterior pituitary of mutant mice. Growth failure of mutant mice was partly rescued by hypodermic injection of recombinant GH. To clarify whether this abnormality was induced by the primary effect of MITOL knockdown in the anterior pituitary or a secondary effect of other lesions, we performed lentiviral-mediated knockdown of MITOL on cultured rat pituitary GH3 cells, which secrete GH. GH production was severely compromised in MITOL-knockdown GH3 cells. In conclusion, MITOL plays a critical role in the development of the anterior pituitary; therefore, mice with MITOL dysfunction exhibited pituitary dwarfism caused by anterior pituitary hypoplasia. Our findings suggest that mitochondrial dysfunction is commonly involved in the unknown pathogenesis of pituitary dwarfism.


Asunto(s)
Enanismo/genética , Enanismo/metabolismo , Proteínas Mitocondriales/genética , Adenohipófisis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular Tumoral , Enanismo/tratamiento farmacológico , Técnicas de Silenciamiento del Gen , Hormona del Crecimiento/administración & dosificación , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Prolactina/genética , Prolactina/metabolismo , ARN Mensajero/genética , Ratas , Transducción de Señal/genética , Transfección
4.
Biomolecules ; 10(3)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183225

RESUMEN

Mitochondria are highly dynamic organelles that constantly fuse, divide, and move, and their function is regulated and maintained by their morphologic changes. Mitochondrial disease (MD) comprises a group of disorders involving mitochondrial dysfunction. However, it is not clear whether changes in mitochondrial morphology are related to MD. In this study, we examined mitochondrial morphology in fibroblasts from patients with MD (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and Leigh syndrome). We observed that MD fibroblasts exhibited significant mitochondrial fragmentation by upregulation of Drp1, which is responsible for mitochondrial fission. Interestingly, the inhibition of mitochondrial fragmentation by Drp1 knockdown enhanced cellular toxicity and led to cell death in MD fibroblasts. These results suggest that mitochondrial fission plays a critical role in the attenuation of mitochondrial damage in MD fibroblasts.


Asunto(s)
Dinaminas/metabolismo , Fibroblastos/metabolismo , Enfermedad de Leigh/metabolismo , Síndrome MELAS/metabolismo , Mitocondrias/metabolismo , Piel/metabolismo , Muerte Celular , Células Cultivadas , Fibroblastos/patología , Humanos , Enfermedad de Leigh/patología , Síndrome MELAS/patología , Mitocondrias/patología , Piel/patología
5.
Sci Rep ; 9(1): 20107, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882856

RESUMEN

CRMP-5-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, is predominantly expressed in the developing brain. We previously demonstrated that CRAG, but not centaurin-γ3, translocates to the nucleus and activates the serum response factor (SRF)-c-Fos pathway in cultured neuronal cells. However, the physiological relevance of CRAG in vivo is unknown. Here, we found that CRAG/centaurin-γ3-knockout mice showed intensively suppressed kainic acid-induced c-fos expression in the hippocampus. Analyses of molecular mechanisms underlying CRAG-mediated SRF activation revealed that CRAG has an essential role in GTPase activity, interacts with ELK1 (a co-activator of SRF), and activates SRF in an ELK1-dependent manner. Furthermore, CRAG and ELK1 interact with promyelocytic leukaemia bodies through SUMO-interacting motifs, which is required for SRF activation. These results suggest that CRAG plays a critical role in ELK1-dependent SRF-c-fos activation at promyelocytic leukaemia bodies in the developing brain.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al GTP/genética , Proteínas Activadoras de GTPasa/genética , Factor de Respuesta Sérica/metabolismo , Proteína Elk-1 con Dominio ets/genética , Animales , Hipocampo/metabolismo , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sumoilación
6.
PLoS One ; 14(11): e0224967, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31730661

RESUMEN

Little is known about the molecular mechanisms of cognitive deficits in psychiatric disorders. CAMDI is a psychiatric disorder-related factor, the deficiency of which in mice results in delayed neuronal migration and psychiatrically abnormal behaviors. Here, we found that CAMDI-deficient mice exhibited impaired recognition memory and spatial reference memory. Knockdown of CAMDI in hippocampal neurons increased the amount of internalized alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) and attenuated the chemical long-term potentiation (LTP)-dependent cell surface expression of AMPAR. KIBRA was identified as a novel CAMDI-binding protein that retains AMPAR in the cytosol after internalization. KIBRA inhibited CAMDI-dependent Rab11 activation, thereby attenuating AMPAR cell surface expression. These results suggest that CAMDI regulates AMPAR cell surface expression during LTP. CAMDI dysfunction may partly explain the mechanism underlying cognitive deficits in psychiatric diseases.


Asunto(s)
Membrana Celular/metabolismo , Cognición , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Memoria , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Receptores AMPA/metabolismo , Animales , Línea Celular Tumoral , Endocitosis , Humanos , Potenciación a Largo Plazo , Ratones Noqueados , Unión Proteica , Memoria Espacial , Proteínas de Unión al GTP rab/metabolismo
7.
EMBO J ; 38(15): e100999, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368599

RESUMEN

Unresolved endoplasmic reticulum (ER) stress shifts the unfolded protein response signaling from cell survival to cell death, although the switching mechanism remains unclear. Here, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) inhibits ER stress-induced apoptosis through ubiquitylation of IRE1α at the mitochondria-associated ER membrane (MAM). MITOL promotes K63-linked chain ubiquitination of IRE1α at lysine 481 (K481), thereby preventing hyper-oligomerization of IRE1α and regulated IRE1α-dependent decay (RIDD). Therefore, under ER stress, MITOL depletion or the IRE1α mutant (K481R) allows for IRE1α hyper-oligomerization and enhances RIDD activity, resulting in apoptosis. Similarly, in the spinal cord of MITOL-deficient mice, ER stress enhances RIDD activity and subsequent apoptosis. Notably, unresolved ER stress attenuates IRE1α ubiquitylation, suggesting that this directs the apoptotic switch of IRE1α signaling. Our findings suggest that mitochondria regulate cell fate under ER stress through IRE1α ubiquitylation by MITOL at the MAM.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Células COS , Línea Celular , Chlorocebus aethiops , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31416892

RESUMEN

Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo. In MITOL-deficient neurons, we observed a significant reduction in the ER-mitochondria contact sites, which might lead to perturbation of phospholipids transfer, consequently reduce cardiolipin biogenesis. We also found that branched large mitochondria disappeared by deletion of MITOL. These morphological abnormalities of mitochondria resulted in enhanced oxidative stress in brain, which led to astrogliosis and microglial activation partly causing abnormal behavior. In conclusion, the reduced ER-mitochondria tethering and excessive mitochondrial fission may trigger neuroinflammation through oxidative stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gliosis/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Cardiolipinas/metabolismo , Técnicas de Inactivación de Genes , Gliosis/metabolismo , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Oxidativo , Fosfolípidos/metabolismo
9.
Cell Mol Life Sci ; 74(19): 3533-3552, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28516224

RESUMEN

Normal development of the cerebral cortex is an important process for higher brain functions, such as language, and cognitive and social functions. Psychiatric disorders, such as schizophrenia and autism, are thought to develop owing to various dysfunctions occurring during the development of the cerebral cortex. Radial neuronal migration in the embryonic cerebral cortex is a complex process, which is achieved by strict control of cytoskeletal dynamics, and impairments in this process are suggested to cause various psychiatric disorders. Our recent findings indicate that radial neuronal migration as well as psychiatric behaviors is rescued by controlling microtubule stability during the embryonic stage. In this review, we outline the relationship between psychiatric disorders, such as schizophrenia and autism, and radial neuronal migration in the cerebral cortex by focusing on the cytoskeleton and centrosomes. New treatment strategies for psychiatric disorders will be discussed.


Asunto(s)
Trastorno del Espectro Autista/patología , Centrosoma/patología , Corteza Cerebral/embriología , Citoesqueleto/patología , Neuronas/patología , Esquizofrenia/patología , Animales , Trastorno del Espectro Autista/etiología , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/patología , Humanos , Neuronas/citología , Esquizofrenia/etiología
10.
EMBO Rep ; 17(12): 1785-1798, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27737934

RESUMEN

The DISC1-interacting protein CAMDI has been suggested to promote radial migration through centrosome regulation. However, its physiological relevance is unclear. Here, we report the generation and characterization of CAMDI-deficient mice. CAMDI-deficient mice exhibit delayed radial migration with aberrant neural circuit formation and psychiatric behaviors including hyperactivity, repetitive behavior, and social abnormality typically observed in autism spectrum disorder patients. Analyses of direct targets of CAMDI identify HDAC6 whose α-tubulin deacetylase activity is inhibited by CAMDI at the centrosome. CAMDI deficiency increases HDAC6 activity, leading to unstable centrosomes with reduced γ-tubulin and acetylated α-tubulin levels. Most importantly, psychiatric behaviors as well as delayed migration are significantly rescued by treatment with Tubastatin A, a specific inhibitor of HDAC6. Our findings indicate that HDAC6 hyperactivation by CAMDI deletion causes psychiatric behaviors, at least in part, through delayed radial migration due to impaired centrosomes.


Asunto(s)
Histona Desacetilasas/metabolismo , Trastornos Mentales/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/fisiología , Acetilación , Animales , Trastorno del Espectro Autista/metabolismo , Centrosoma/metabolismo , Centrosoma/patología , Histona Desacetilasa 6 , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Trastornos Mentales/tratamiento farmacológico , Ratones , Proteínas del Tejido Nervioso/genética , Procesamiento Proteico-Postraduccional , Agitación Psicomotora , Tubulina (Proteína)/metabolismo
11.
Ann Thorac Surg ; 101(5): e147-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27106462

RESUMEN

Blood cysts are exceedingly rare benign cardiac tumors, generally involving the cardiac valves. They are found mainly in the first month of life and in children and are very uncommon in adults. We present a rare case of double right atrium blood cysts, incidentally detected by transthoracic echocardiography in an 85-year old patient.


Asunto(s)
Ecocardiografía/métodos , Atrios Cardíacos/diagnóstico por imagen , Neoplasias Cardíacas/diagnóstico por imagen , Anciano de 80 o más Años , Femenino , Neoplasias Cardíacas/patología , Humanos
12.
Eur J Neurosci ; 40(8): 3158-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25074496

RESUMEN

Adequate regulation of synaptic transmission is critical for appropriate neural circuit functioning. Although a number of molecules involved in synaptic neurotransmission have been identified, the molecular mechanisms regulating neurotransmission are not fully understood. Here, we focused on Centaurin gamma1A (CenG1A) and examined its role in synaptic transmission regulation using Drosophila larval neuromuscular junctions. CenG1A is a member of the Centaurin family, which contains Pleckstrin homology, ADP ribosylation factor GTPase-activating protein, and ankyrin repeat domains. Due to the existence of these functional domains, CenG1A is proposed to be involved in the process of synaptic release; however, no evidence for this has been found to date. In this study, we investigated the potential role for CenG1A in the process of synaptic release by performing intracellular recordings in larval muscle cells. We found that neurotransmitter release from presynaptic cells was enhanced in cenG1A mutants. This effect was also observed in larvae with reduced CenG1A function in either presynaptic or postsynaptic cells. In addition, we revealed that suppressing CenG1A function in postsynaptic muscle cells led to an increase in the probability of neurotransmitter release, whereas its suppression in presynaptic neurons led to an increase in neurotransmitter release probability and an increase in the number of synaptic vesicles. These results suggested that CenG1A functions at both presynaptic and postsynaptic sites as a negative regulator of neurotransmitter release. Our study provided evidence for a key role of CenG1A in proper synaptic transmission at neuromuscular junctions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Transmisión Sináptica , Animales , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Activadoras de GTPasa/genética , Larva , Unión Neuromuscular/metabolismo
13.
Mol Cell ; 51(1): 20-34, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23727017

RESUMEN

The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , GTP Fosfohidrolasas/análisis , Células HeLa , Humanos , Proteínas de la Membrana , Ratones , Proteínas Mitocondriales/análisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
14.
Proc Natl Acad Sci U S A ; 109(7): 2382-7, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308378

RESUMEN

Nitric oxide (NO) is implicated in neuronal cell survival. However, excessive NO production mediates neuronal cell death, in part via mitochondrial dysfunction. Here, we report that the mitochondrial ubiquitin ligase, MITOL, protects neuronal cells from mitochondrial damage caused by accumulation of S-nitrosylated microtubule-associated protein 1B-light chain 1 (LC1). S-nitrosylation of LC1 induces a conformational change that serves both to activate LC1 and to promote its ubiquination by MITOL, indicating that microtubule stabilization by LC1 is regulated through its interaction with MITOL. Excessive NO production can inhibit MITOL, and MITOL inhibition resulted in accumulation of S-nitrosylated LC1 following stimulation of NO production by calcimycin and N-methyl-D-aspartate. LC1 accumulation under these conditions resulted in mitochondrial dysfunction and neuronal cell death. Thus, the balance between LC1 activation by S-nitrosylation and down-regulation by MITOL is critical for neuronal cell survival. Our findings may contribute significantly to an understanding of the mechanisms of neurological diseases caused by nitrosative stress-mediated mitochondrial dysfunction.


Asunto(s)
Muerte Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Neuronas/citología , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Proteínas de la Membrana , Mitocondrias/fisiología , Compuestos Nitrosos/metabolismo , Proteolisis , Ubiquitinación
15.
J Biol Chem ; 286(39): 33879-89, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832068

RESUMEN

We previously demonstrated that CRAM (CRMP5)-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, facilitated degradation of expanded polyglutamine protein (polyQ) via the nuclear ubiquitin-proteasome pathway. Taking advantage of this feature, we also showed that lentivirus-mediated CRAG expression in the Purkinje cells of mice expressing polyQ resulted in clearance of the polyQ aggregates and rescue from ataxia. However, the molecular basis of the function of CRAG in cell survival against polyQ remains unclear. Here we report that CRAG, but not centaurin-γ3, induces transcriptional activation of c-Fos-dependent activator protein-1 (AP-1) via serum response factor (SRF). Mutation analysis indicated that the nuclear localization signal and both the N- and C-terminal regions of CRAG are critical for SRF-dependent c-Fos activation. CRAG knockdown by siRNA or expression of a dominant negative mutant of CRAG significantly attenuated the c-Fos activation triggered by either polyQ or the proteasome inhibitor MG132. Importantly, c-Fos expression partially rescued the enhanced cytotoxicity of CRAG knockdown in polyQ-expressing or MG132-treated cells. Finally, we suggest the possible involvement of CRAG in the sulfiredoxin-mediated antioxidant pathway via AP-1. Taken together, these results demonstrated that CRAG enhances the cell survival signal against the accumulation of unfolded proteins, including polyQ, through not only proteasome activation, but also the activation of c-Fos-dependent AP-1.


Asunto(s)
Ataxia/metabolismo , GTP Fosfohidrolasas/metabolismo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células de Purkinje/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Ataxia/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Activación Enzimática/genética , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ratones , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Células de Purkinje/patología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/genética , Factor de Transcripción AP-1/genética
16.
Mitochondrion ; 11(1): 139-46, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20851218

RESUMEN

Expansion of a polyglutamine tract in ataxin-3 (polyQ) causes Machado-Joseph disease, a late-onset neurodegenerative disorder characterized by ubiquitin-positive aggregate formation. Several lines of evidence demonstrate that polyQ also accumulates in mitochondria and causes mitochondrial dysfunction. To uncover the mechanism of mitochondrial quality-control via the ubiquitin-proteasome pathway, we investigated whether MITOL, a novel mitochondrial ubiquitin ligase localized in the mitochondrial outer membrane, is involved in the degradation of pathogenic ataxin-3 in mitochondria. In this study, we used N-terminal-truncated pathogenic ataxin-3 with a 71-glutamine repeat (ΔNAT-3Q71) and found that MITOL promoted ΔNAT-3Q71 degradation via the ubiquitin-proteasome pathway and attenuated mitochondrial accumulation of ΔNAT-3Q71. Conversely, MITOL knockdown induced an accumulation of detergent-insoluble ΔNAT-3Q71 with large aggregate formation, resulting in cytochrome c release and subsequent cell death. Thus, MITOL plays a protective role against polyQ toxicity, and thereby may be a potential target for therapy in polyQ diseases. Our findings indicate a protein quality-control mechanism at the mitochondrial outer membrane via a MITOL-mediated ubiquitin-proteasome pathway.


Asunto(s)
Enfermedad de Machado-Joseph/patología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/toxicidad , Péptidos/química , Péptidos/toxicidad , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células COS/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , Regulación de la Expresión Génica , Humanos , Membranas Intracelulares/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Proteínas de la Membrana , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
17.
Genes Cells ; 16(2): 190-202, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21143562

RESUMEN

Seven human Sir2 homologues (sirtuin) have been identified to date. In this study, we clarified the mechanism of subcellular localization of two SIRT5 isoforms (i.e., SIRT5(iso1) and SIRT5(iso2) ) encoded by the human SIRT5 gene and whose C-termini slightly differ from each other. Although both isoforms contain cleavable mitochondrial targeting signals at their N-termini, we found that the cleaved SIRT5(iso2) was localized mainly in mitochondria, whereas the cleaved SIRT5(iso1) was localized in both mitochondria and cytoplasm. SIRT5ΔC, which is composed of only the common domain, showed the same mitochondrial localization as that of SIRT5(iso2) . These results suggest that the cytoplasmic localization of cleaved SIRT5(iso1) is dependent on the SIRT5(iso1) -specific C-terminus. Further analysis showed that the C-terminus of SIRT5(iso2) , which is rich in hydrophobic amino acid residues, functions as a mitochondrial membrane insertion signal. In addition, a de novo protein synthesis inhibition experiment using cycloheximide showed that the SIRT5(iso1) -specific C-terminus is necessary for maintaining the stability of SIRT5(iso1) . Moreover, genome sequence analysis from each organism examined indicated that SIRT5(iso2) is a primate-specific isoform. Taken together, these results indicate that human SIRT5 potentially controls various primate-specific functions via two isoforms with different intracellular localizations or stabilities.


Asunto(s)
Mitocondrias/enzimología , Sirtuinas/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Primates/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sirtuinas/genética
18.
J Biol Chem ; 286(10): 8459-8471, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187285

RESUMEN

Phospholipase Cδ3 (PLCδ3) is a key enzyme regulating phosphoinositide metabolism; however, its physiological function remains unknown. Because PLCδ3 is highly enriched in the cerebellum and cerebral cortex, we examined the role of PLCδ3 in neuronal migration and outgrowth. PLCδ3 knockdown (KD) inhibits neurite formation of cerebellar granule cells, and application of PLCδ3KD using in utero electroporation in the developing brain results in the retardation of the radial migration of neurons in the cerebral cortex. In addition, PLCδ3KD inhibits axon and dendrite outgrowth in primary cortical neurons. PLCδ3KD also suppresses neurite formation of Neuro2a neuroblastoma cells induced by serum withdrawal or treatment with retinoic acid. This inhibition is released by the reintroduction of wild-type PLCδ3. Interestingly, the H393A mutant lacking phosphatidylinositol 4,5-bisphosphate hydrolyzing activity generates supernumerary protrusions, and a constitutively active mutant promotes extensive neurite outgrowth, indicating that PLC activity is important for normal neurite outgrowth. The introduction of dominant negative RhoA (RhoA-DN) or treatment with Y-27632, a Rho kinase-specific inhibitor, rescues the neurite extension in PLCδ3KD Neuro2a cells. Similar effects were also detected in primary cortical neurons. Furthermore, the RhoA expression level was significantly decreased by serum withdrawal or retinoic acid in control cells, although this decrease was not observed in PLCδ3KD cells. We also found that exogenous expression of PLCδ3 down-regulated RhoA protein, and constitutively active PLCδ3 promotes the RhoA down-regulation more significantly than PLCδ3 upon differentiation. These results indicate that PLCδ3 negatively regulates RhoA expression, inhibits RhoA/Rho kinase signaling, and thereby promotes neurite extension.


Asunto(s)
Regulación hacia Abajo/fisiología , Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/enzimología , Fosfolipasa C delta/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/biosíntesis , Amidas/farmacología , Animales , Línea Celular Tumoral , Cerebelo/enzimología , Corteza Cerebral/enzimología , Regulación hacia Abajo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Mutación Missense , Proteínas del Tejido Nervioso/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C delta/genética , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
19.
J Biol Chem ; 285(52): 40554-61, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20956536

RESUMEN

Centrosomes play a crucial role in the directed migration of developing neurons. However, the underlying mechanism is poorly understood. This study has identified a novel disrupted in schizophrenia 1 (DISC1)-interacting protein, named CAMDI after coiled-coil protein associated with myosin II and DISC1, which translocates to the centrosome in a DISC1-dependent manner. Knockdown of CAMDI by shRNA revealed severely impaired radial migration with disoriented centrosomes. A yeast two-hybrid screen identified myosin II as a binding protein of CAMDI. CAMDI interacts preferentially with phosphomyosin II and induces an accumulation of phosphomyosin II at the centrosome in a DISC1-dependent manner. Interestingly, one single nucleotide polymorphism of the CAMDI gene (R828W) is identified, and its gene product was found to reduce the binding ability to phosphomyosin II. Furthermore, mice with overexpression of R828W in neurons exhibit an impaired radial migration. Our findings indicate that CAMDI is required for radial migration probably through DISC1 and myosin II-mediated centrosome positioning during neuronal development.


Asunto(s)
Movimiento Celular/fisiología , Centrosoma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Datos de Secuencia Molecular , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/citología
20.
Mol Biol Cell ; 20(21): 4524-30, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19741096

RESUMEN

We have previously identified a novel mitochondrial ubiquitin ligase, MITOL, which is localized in the mitochondrial outer membrane and is involved in the control of mitochondrial dynamics. In this study, we examined whether MITOL eliminates misfolded proteins localized to mitochondria. Mutant superoxide dismutase1 (mSOD1), one of misfolded proteins, has been shown to localize in mitochondria and induce mitochondrial dysfunction, possibly involving in the onset and progression of amyotrophic lateral sclerosis. We found that in the mitochondria, MITOL interacted with and ubiquitinated mSOD1 but not wild-type SOD1. In vitro ubiquitination assay revealed that MITOL directly ubiquitinates mSOD1. Cycloheximide-chase assay in the Neuro2a cells indicated that MITOL overexpression promoted mSOD1 degradation and suppressed both the mitochondrial accumulation of mSOD1 and mSOD1-induced reactive oxygen species (ROS) generation. Conversely, the overexpression of MITOL CS mutant and MITOL knockdown by specific siRNAs resulted in increased accumulation of mSOD1 in mitochondria, which enhanced mSOD1-induced ROS generation and cell death. Thus, our findings indicate that MITOL plays a protective role against mitochondrial dysfunction caused by the mitochondrial accumulation of mSOD1 via the ubiquitin-proteasome pathway.


Asunto(s)
Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Línea Celular , Humanos , Proteínas de la Membrana , Ratones , Proteínas Mitocondriales/genética , Mutación , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA