Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Neurotherapeutics ; 21(5): e00446, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277505

RESUMEN

Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.


Asunto(s)
Terapia Genética , Enfermedad del Almacenamiento de Glucógeno , Humanos , Enfermedad del Almacenamiento de Glucógeno/terapia , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/genética , Animales , Terapia Genética/métodos , Terapia Genética/tendencias , Glucógeno/metabolismo , Terapia de Reemplazo Enzimático/métodos , Enfermedades del Sistema Nervioso/terapia , Enfermedades del Sistema Nervioso/metabolismo
2.
Biochem Pharmacol ; 228: 116302, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38763261

RESUMEN

Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.


Asunto(s)
Receptores AMPA , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Animales , Humanos , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Antagonistas de Aminoácidos Excitadores/farmacología
3.
Exp Neurol ; 376: 114769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582278

RESUMEN

Ampakines are positive allosteric modulators of AMPA receptors. We hypothesized that low-dose ampakine treatment increases diaphragm electromyogram (EMG) activity after mid-cervical contusion injury in rats. Adult male and female Sprague Dawley rats were implanted with in-dwelling bilateral diaphragm EMG electrodes. Rats received a 150 kDyn C4 unilateral contusion (C4Ct). At 4- and 14-days following C4Ct, rats were given an intravenous bolus of ampakine CX717 (5 mg/kg, n = 10) or vehicle (2-hydroxypropyl-beta-cyclodextrin; HPCD; n = 10). Diaphragm EMG was recorded while breathing was assessed using whole-body plethysmography. At 4-days, ampakine administration caused an immediate and sustained increase in bilateral peak inspiratory diaphragm EMG bursting and ventilation. The vehicle had no impact on EMG bursting. CX717 treated rats were able to increase EMG activity during a respiratory challenge to a greater extent vs. vehicle treated. Rats showed a considerable degree of spontaneous recovery of EMG bursting by 14 days, and the impact of CX717 delivery was blunted as compared to 4-days. Direct recordings from the phrenic nerve at 21-24 days following C4Ct confirmed that ampakines stimulated bilateral phrenic neural output in injured rats. We conclude that low-dose intravenous treatment with a low-impact ampakine can enhance diaphragm activation shortly following mid-cervical contusion injury, when deficits in diaphragm activation are prominent.


Asunto(s)
Diafragma , Electromiografía , Isoxazoles , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Ratas , Masculino , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Modelos Animales de Enfermedad , Contusiones/fisiopatología , Médula Cervical/lesiones , Médula Cervical/efectos de los fármacos
4.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659846

RESUMEN

Impaired diaphragm activation contributes to morbidity and mortality in many neurodegenerative diseases and neurologic injuries. We conducted experiments to determine if expression of an excitatory DREADD (designer receptors exclusively activation by designer drugs) in the mid-cervical spinal cord would enable respiratory-related activation of phrenic motoneurons to increase diaphragm activation. Wild type (C57/bl6) and ChAT-Cre mice received bilateral intraspinal (C4) injections of an adeno-associated virus (AAV) encoding the hM3D(Gq) excitatory DREADD. In wild type mice, this produced non-specific DREADD expression throughout the mid-cervical ventral horn. In ChAT-Cre mice, a Cre-dependent viral construct was used to drive DREADD expression in C4 ventral horn motoneurons, targeting the phrenic motoneuron pool. Diaphragm EMG was recorded during spontaneous breathing at 6-8 weeks post-AAV delivery. The selective DREADD ligand JHU37160 (J60) caused a bilateral, sustained (>1 hr) increase in inspiratory EMG bursting in both groups; the relative increase was greater in ChAT-Cre mice. Additional experiments in a ChAT-Cre rat model were conducted to determine if spinal DREADD activation could increase inspiratory tidal volume (VT) during spontaneous breathing without anesthesia. Three to four months after intraspinal (C4) injection of AAV driving Cre-dependent hM3D(Gq) expression, intravenous J60 resulted in a sustained (>30 min) increase in VT assessed using whole-body plethysmography. Subsequently, direct nerve recordings confirmed that J60 evoked a >50% increase in inspiratory phrenic output. The data show that mid-cervical spinal DREADD expression targeting the phrenic motoneuron pool enables ligand-induced, sustained increases in the neural drive to the diaphragm. Further development of this technology may enable application to clinical conditions associated with impaired diaphragm activation and hypoventilation.

5.
Elife ; 122024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451184

RESUMEN

Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague-Dawley rats received a unilateral contusion of the T9 spinal cord (n = 10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed 5 d post-SCI under urethane anesthesia. Data were compared to responses in spinal-intact rats (n = 8). The 'low-impact' ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (2-hydroxypropyl-beta-cyclodextrin [HPCD]) was administered intravenously. The HPCD vehicle had no discernible impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder-voiding capability at subacute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Ratas , Femenino , Animales , Calidad de Vida , Ratas Sprague-Dawley , Receptores AMPA
6.
J Neurophysiol ; 131(2): 216-224, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116608

RESUMEN

Repeated hypoxic episodes can produce a sustained (>60 min) increase in neural drive to the diaphragm. The requirement of repeated hypoxic episodes (vs. a single episode) to produce phrenic motor facilitation (pMF) can be removed by allosteric modulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors using ampakines. We hypothesized that the ampakine-hypoxia interaction resulting in pMF requires that ampakine dosing precedes the onset of hypoxia. Phrenic nerve recordings were made from urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats during isocapnic conditions. Ampakine CX717 (15 mg/kg iv) was given immediately before (n = 8), during (n = 8), or immediately after (n = 8) a 5-min hypoxic episode (arterial oxygen partial pressure 40-45 mmHg). Ampakine before hypoxia (Aprior) resulted in a sustained increase in inspiratory phrenic burst amplitude (i.e., pMF) reaching +70 ± 21% above baseline (BL) after 60 min. This was considerably greater than corresponding values in the groups receiving ampakine during hypoxia (+28 ± 47% above BL, P = 0.005 vs. Aprior) or after hypoxia (+23 ± 40% above BL, P = 0.005 vs. Aprior). Phrenic inspiratory burst rate, heart rate, and systolic, diastolic, and mean arterial pressure (mmHg) were similar across the three treatment groups (all P > 0.3, treatment effect). We conclude that the presentation order of ampakine and hypoxia impacts the magnitude of pMF, with ampakine pretreatment evoking the strongest response. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY Phrenic motor facilitation (pMF) is evoked after repeated episodes of brief hypoxia. pMF can also be induced when an allosteric modulator of AMPA receptors (ampakine) is intravenously delivered immediately before a single brief hypoxic episode. Here we show that ampakine delivery before hypoxia (vs. during or after hypoxia) evokes the largest pMF with minimal impact on arterial blood pressure and heart rate. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.


Asunto(s)
Hipoxia , Uretano , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Anestésicos Intravenosos , Nervio Frénico/fisiología
7.
J Neuroinflammation ; 20(1): 303, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110993

RESUMEN

Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.


Asunto(s)
Oxigenoterapia Hiperbárica , Traumatismos de la Médula Espinal , Ratas , Masculino , Femenino , Animales , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/patología , Inflamación/metabolismo , Oxígeno/metabolismo
8.
Front Rehabil Sci ; 4: 1184031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583873

RESUMEN

Introduction: Pompe disease is an inherited disease characterized by a deficit in acid-α-glucosidase (GAA), an enzyme which degrades lysosomal glycogen. The phrenic-diaphragm motor system is affected preferentially, and respiratory failure often occurs despite GAA enzyme replacement therapy. We hypothesized that the continued use of diaphragm pacing (DP) might improve ventilator-dependent subjects' respiratory outcomes and increase ventilator-free time tolerance. Methods: Six patients (3 pediatric) underwent clinical DP implantation and started diaphragm conditioning, which involved progressively longer periods of daily, low intensity stimulation. Longitudinal respiratory breathing pattern, diaphragm electromyography, and pulmonary function tests were completed when possible, to assess feasibility of use, as well as diaphragm and ventilatory responses to conditioning. Results: All subjects were eventually able to undergo full-time conditioning via DP and increase their maximal tolerated time off-ventilator, when compared to pre-implant function. Over time, 3 of 6 subjects also demonstrated increased or stable minute ventilation throughout the day, without positive-pressure ventilation assistance. Discussion: Respiratory insufficiency is one of the main causes of death in patients with Pompe disease. Our results indicate that DP in Pompe disease was feasible, led to few adverse events and stabilized breathing for up to 7 years.

9.
Curr Opin Neurol ; 36(5): 464-473, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639402

RESUMEN

PURPOSE OF REVIEW: Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS: Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY: Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Terapia Genética , Sistema Nervioso Central , Dependovirus/genética , Glucógeno
10.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37293023

RESUMEN

Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague Dawley rats received a unilateral contusion of the T9 spinal cord (n=10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed five days post-SCI under urethane anesthesia. Data were compared to responses in spinal intact rats (n=8). The "low impact" ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (HPCD) was administered intravenously. The HPCD vehicle had no discernable impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder voiding capability at sub-acute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.

11.
Brain Commun ; 5(2): fcad067, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091583

RESUMEN

Recent work shows that certain antibody-based assays for the neurofilament light chain detect informative signals in the CSF and blood of human and animals affected by a variety of CNS injury and disease states. Much of this work has been performed using two mouse monoclonal antibodies to neurofilament light, UD1 and UD2, also known as Clones 2.1 and 47.3, respectively. These are the essential components of the Uman Diagnostics Neurofilament-Light™ ELISA kit, the Quanterix Simoa™ bead-based assay and others. We show that both antibodies bind to neighbouring epitopes in a short, conserved and unusual peptide in the centre of the neurofilament light Coil 2 segment of the 'rod' domain. We also describe a surprising and useful feature of Uman and similar reagents. While other well-characterized neurofilament antibodies generally show robust staining of countless cells and processes in CNS sections from healthy rats, both Uman antibodies reveal only a minor subset of profiles, presumably spontaneously degenerating or degenerated neurons and their processes. However, following experimental mid-cervical spinal cord injuries to rats, both Uman antibodies recognize numerous profiles in fibre tracts damaged by the injury administered. These profiles were typically swollen, beaded, discontinuous or sinusoidal as expected for degenerating and degenerated processes. We also found that several antibodies to the C-terminal 'tail' region of the neurofilament light protein bind undamaged axonal profiles but fail to recognize the Uman-positive material. The unmasking of the Uman epitopes and the loss of the neurofilament light tail epitopes can be mimicked by treating sections from healthy animals with proteases suggesting that the immunostaining changes we discovered are due to neurodegeneration-induced proteolysis. We have also generated a novel panel of monoclonal and polyclonal antibodies directed against the Uman epitopes that have degeneration-specific staining properties identical to the Uman reagents. Using these, we show that the region to which the Uman reagents bind contains further hidden epitopes distinct from those recognized by the two Uman reagents. We speculate that the Uman-type epitopes are part of a binding region important for higher order neurofilament assembly. The work provides important insights into the properties of the Uman assay, describes novel and useful properties of Uman-type and neurofilament light tail-binding antibodies and provides a hypothesis relevant to further understanding of neurofilament assembly.

12.
Respir Physiol Neurobiol ; 309: 103998, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36423822

RESUMEN

Inadequate tongue muscle activation contributes to dysarthria, dysphagia, and obstructive sleep apnea. Thus, treatments which increase tongue muscle activity have potential clinical benefit. We hypothesized that lingual injection of an adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) would enable light-induced activation of tongue motor units during spontaneous breathing. An AAV serotype 9 vector (pACAGW-ChR2-Venus-AAV9, 8.29 × 1011 vg) was injected to the posterior tongue in adult C57BL/6J mice. After 12 weeks, mice were anesthetized and posterior tongue electromyographic (EMG) activity was recorded during spontaneous breathing; a light source was positioned near the injection site. Light-evoked EMG responses increased with the intensity and duration of pulses. Stimulus trains (250 ms) evoked EMG bursts that were comparable to endogenous (inspiratory) tongue muscle activation. Histology confirmed lingual myofiber transgene expression. We conclude that intralingual AAV9-ChR2 delivery enables light evoked lingual EMG activity. These proof-of-concept studies lay the groundwork for clinical application of this novel approach to lingual therapeutics.


Asunto(s)
Optogenética , Apnea Obstructiva del Sueño , Ratones , Animales , Ratones Endogámicos C57BL , Respiración , Lengua/fisiología
13.
J Neurophysiol ; 129(1): 144-158, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416447

RESUMEN

Phrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application. Studies of phrenic motor control and/or neuroplasticity mechanisms also typically require targeting of PhrMNs with drugs, viral vectors, or tracers. The location of the phrenic motoneuron pool, however, poses a challenge. Selective PhrMN targeting is possible with molecules that move retrogradely upon uptake into phrenic axons subsequent to diaphragm or phrenic nerve delivery. However, nonspecific approaches that use intrathecal or intravenous delivery have considerably advanced the understanding of PhrMN control. New opportunities for targeted PhrMN gene expression may be possible with intersectional genetic methods. This article provides an overview of methods for targeting the phrenic motoneuron pool for studies of PhrMNs in health and disease.


Asunto(s)
Técnicas de Transferencia de Gen , Neuronas Motoras , Ratas , Animales , Ratas Sprague-Dawley , Neuronas Motoras/fisiología , Diafragma/inervación , Nervio Frénico/fisiología
14.
Respir Physiol Neurobiol ; 307: 103975, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206972

RESUMEN

The spiny mouse (Acomys) is a precocial mammal with unique regenerative abilities. We used whole-body plethysmography to describe the breathing patterns and CO2 production (VCO2) of adult spiny mice (n = 10 male, 10 female) and C57BL/6 mice (n = 9 male, 11 female). During quiet breathing, female but not male spiny mice had lower tidal volumes and CO2 production vs. C57BL/6 mice. During extended hypoxia (30 min), male and female spiny mice decreased VCO2 and tidal volume to a greater degree than C57BL/6 mice. During an acute hypoxic-hypercapnic respiratory challenge (10% O2, 7% CO2), male and female spiny mice had blunted ventilatory responses as compared to C57BL/6 mice, primarily from a diminished increase in respiratory rate. These data establish a baseline for studies of respiratory physiology and neurobiology in spiny mice in the context of their remarkable regenerative capacity and their unique background of a desert dwelling species.


Asunto(s)
Dióxido de Carbono , Murinae , Animales , Ratones , Femenino , Ratones Endogámicos C57BL , Murinae/fisiología , Hipercapnia , Hipoxia , Respiración
15.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290796

RESUMEN

Cardiorespiratory dysfunction resulting from doxorubicin (DOX) chemotherapy treatment is a debilitating condition affecting cancer patient outcomes and quality of life. DOX treatment promotes cardiac and respiratory muscle pathology due to enhanced reactive oxygen species (ROS) production, mitochondrial dysfunction and impaired muscle contractility. In contrast, hyperbaric oxygen (HBO) therapy is considered a controlled oxidative stress that can evoke a substantial and sustained increase in muscle antioxidant expression. This HBO-induced increase in antioxidant capacity has the potential to improve cardiac and respiratory (i.e., diaphragm) muscle redox balance, preserving mitochondrial function and preventing muscle dysfunction. Therefore, we determined whether HBO therapy prior to DOX treatment is sufficient to enhance muscle antioxidant expression and preserve muscle redox balance and cardiorespiratory muscle function. To test this, adult female Sprague Dawley rats received HBO therapy (2 or 3 atmospheres absolute (ATA), 100% O2, 1 h/day) for 5 consecutive days prior to acute DOX treatment (20 mg/kg i.p.). Our data demonstrate that 3 ATA HBO elicits a greater antioxidant response compared to 2 ATA HBO. However, these effects did not correspond with beneficial adaptations to cardiac systolic and diastolic function or diaphragm muscle force production in DOX treated rats. These findings suggest that modulating muscle antioxidant expression with HBO therapy is not sufficient to prevent DOX-induced cardiorespiratory dysfunction.

16.
Handb Clin Neurol ; 188: 393-408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965035

RESUMEN

The phrenic neuromuscular system consists of the phrenic motor nucleus in the mid-cervical spinal cord, the phrenic nerve, and the diaphragm muscle. This motor system helps sustain breathing throughout life, while also contributing to posture, coughing, swallowing, and speaking. The phrenic nerve contains primarily efferent phrenic axons and afferent axons from diaphragm sensory receptors but is also a conduit for autonomic fibers. On a breath-by-breath basis, rhythmic (inspiratory) depolarization of phrenic motoneurons occurs due to excitatory bulbospinal synaptic pathways. Further, a complex propriospinal network innervates phrenic motoneurons and may serve to coordinate postural, locomotor, and respiratory movements. The phrenic neuromuscular system is impacted in a wide range of neuromuscular diseases and injuries. Contemporary research is focused on understanding how neuromuscular plasticity occurs in the phrenic neuromuscular system and using this information to optimize treatments and rehabilitation strategies to improve breathing and related behaviors.


Asunto(s)
Neuronas Motoras , Nervio Frénico , Diafragma/inervación , Humanos , Neuronas Motoras/fisiología , Nervio Frénico/fisiología , Respiración , Médula Espinal
17.
J Neurophysiol ; 128(5): 1133-1142, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976060

RESUMEN

Pompe disease is a lysosomal storage disease resulting from absence or deficiency of acid α-glucosidase (GAA). Tongue-related disorders including dysarthria, dysphagia, and obstructive sleep apnea are common in Pompe disease. Our purpose was to determine if designer receptors exclusively activated by designer drugs (DREADDs) could be used to stimulate tongue motor output in a mouse model of Pompe disease. An adeno-associated virus serotype 9 (AAV9) encoding an excitatory DREADD (AAV9-hSyn-hM3D(Gq)-mCherry, 2.44 × 1010 vg) was administered to the posterior tongue of 5-7-wk-old Gaa null (Gaa-/-) mice. Lingual EMG responses to intraperitoneal injection of saline or a DREADD ligand (JHU37160-dihydrochloride, J60) were assessed 12 wk later during spontaneous breathing. Saline injection produced no consistent changes in lingual EMG. Following the DREADD ligand, there were statistically significant (P < 0.05) increases in both tonic and phasic inspiratory EMG activity recorded from the posterior tongue. Brainstem histology confirmed mCherry expression in hypoglossal (XII) motoneurons in all mice, thus verifying retrograde movement of the AAV9 vector. Morphologically, Gaa-/- XII motoneurons showed histological characteristics that are typical of Pompe disease, including an enlarged soma and vacuolization. We conclude that lingual delivery of AAV9 can be used to drive functional expression of DREADD in XII motoneurons in a mouse model of Pompe disease.NEW & NOTEWORTHY In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intraperitoneal delivery of a DREADD ligand stimulated tonic and phase tongue motor output.In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intravenous delivery of a DREADD ligand stimulated tonic and phase tongue motor output.


Asunto(s)
Drogas de Diseño , Enfermedad del Almacenamiento de Glucógeno Tipo II , Ratones , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , alfa-Glucosidasas/metabolismo , Ligandos , Dependovirus/genética , Neuronas Motoras/metabolismo , Modelos Animales de Enfermedad , Nervio Hipogloso/metabolismo
18.
Spinal Cord Ser Cases ; 8(1): 49, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35501342

RESUMEN

STUDY DESIGN: Observational, analytical cohort study. OBJECTIVES: After incomplete spinal cord injury (iSCI), propriospinal pathways may remain intact enabling coupling between respiration and locomotion. This locomotor-respiratory coupling (LRC) may enable coordination between these two important behaviors and have implications for rehabilitation after iSCI. However, coordination between these behaviors is not well understood and it is unknown if iSCI disrupts LRC. The objective of this study was to compare LRC in ambulatory adults with iSCI to able-bodied controls. SETTING: Rehabilitation Research Center, Jacksonville, Florida, United States of America. METHODS: Adults with iSCI (4 males, 1 female) and able-bodied controls (2 males, 3 females) walked at their fastest comfortable speed for 6 min over ground, and on a treadmill with bodyweight support (10-20%) and as-needed assistance at a standardized fast speed (controls) or their fastest speed (iSCI) for 6 min. LRC was quantified as the percent of breaths that were coupled with steps at a consistent ratio during the last 4 min of each walking condition. RESULTS: Over ground, participants with iSCI demonstrated significantly more LRC than able-bodied controls (72.4 ± 6.4% vs. 59.1% ± 7.5, p = 0.016). During treadmill walking, LRC did not differ between groups (iSCI 67.5 ± 15.8% vs. controls 66.3 ± 4.0%, p > 0.05). CONCLUSIONS: Adults with iSCI demonstrated similar or greater LRC compared to able-bodied controls. This suggests that pathways subserving coordination between these behaviors remain intact in this group of individuals who walk independently after iSCI.


Asunto(s)
Traumatismos de la Médula Espinal , Adulto , Estudios de Cohortes , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Traumatismos de la Médula Espinal/rehabilitación , Caminata
19.
Sci Rep ; 12(1): 6503, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444167

RESUMEN

Impaired diaphragm activation is common in many neuromuscular diseases. We hypothesized that expressing photoreceptors in diaphragm myofibers would enable light stimulation to evoke functional diaphragm activity, similar to endogenous bursts. In a mouse model, adeno-associated virus (AAV) encoding channelrhodopsin-2 (AAV9-CAG-ChR2-mVenus, 6.12 × 1011 vg dose) was delivered to the diaphragm using a minimally invasive method of microinjection to the intrapleural space. At 8-18 weeks following AAV injection, mice were anesthetized and studied during spontaneous breathing. We first showed that diaphragm electromyographic (EMG) potentials could be evoked with brief presentations of light, using a 473 nm high intensity LED. Evoked potential amplitude increased with intensity or duration of the light pulse. We next showed that in a paralyzed diaphragm, trains of light pulses evoked diaphragm EMG activity which resembled endogenous bursting, and this was sufficient to generate respiratory airflow. Light-evoked diaphragm EMG bursts showed no diminution after up to one hour of stimulation. Histological evaluation confirmed transgene expression in diaphragm myofibers. We conclude that intrapleural delivery of AAV9 can drive expression of ChR2 in the diaphragm and subsequent photostimulation can evoke graded compound diaphragm EMG activity similar to endogenous inspiratory bursting.


Asunto(s)
Diafragma , Optogenética , Animales , Channelrhodopsins/genética , Dependovirus/genética , Electromiografía , Ratones
20.
Spinal Cord ; 60(11): 971-977, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35477745

RESUMEN

STUDY DESIGN: Feasibility study, consisting of random-order, cross-over study of a single intervention session, followed by a parallel-arm study of 16 sessions. OBJECTIVES: To investigate the feasibility of a novel combinatorial approach with simultaneous delivery of transcutaneous spinal direct current stimulation (tsDCS) and locomotor training (tsDCS + LT) after spinal cord injury, compared to sham stimulation and locomotor training (sham + LT), and examine preliminary effects on walking function. SETTING: Clinical research center in the southeastern United States. METHODS: Eight individuals with chronic incomplete spinal cord injury (ISCI) completed the two-part protocol. Feasibility was assessed based on safety (adverse responses), tolerability (pain, spasticity, skin integrity), and protocol achievement (session duration, intensity). Walking function was assessed with the 10 m and 6 min walk tests. RESULTS: There were no major adverse responses. Minimal reports of skin irritation and musculoskeletal pain were consistent between groups. Average training peak heart rate as percent of maximum (mean(SD); tsDCS + LT: 66 (4)%, sham + LT: 69 (10)%) and Borg ratings of perceived exertion (tsDCS + LT: 17.5 (1.2), sham + LT: 14.4 (1.8)) indicate both groups trained at high intensities. Walking speed gains exceeded the minimal clinically important difference (MCID) in three of four who received tsDCS + LT (0.18 (0.29) m/s) and one of four in sham + LT (-0.05 (0.23) m/s). Gains in walking endurance exceeded the MCID in one of four in each group (tsDCS + LT: 36.4 (69.0) m, sham + LT: 4.9 (56.9) m). CONCLUSIONS: Combinatorial tsDCS and locomotor training is safe and feasible for individuals with chronic ISCI, even those with considerable walking impairment. Study outcomes support the need to investigate the efficacy of this approach.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Estudios Cruzados , Estudios de Factibilidad , Modalidades de Fisioterapia , Médula Espinal , Traumatismos de la Médula Espinal/terapia , Estimulación de la Médula Espinal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA