Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Comput Biol ; 17(6): e1009077, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34161317

RESUMEN

The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development.


Asunto(s)
Tipificación del Cuerpo/fisiología , Modelos Biológicos , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Biología Computacional , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Sustancias de Crecimiento/fisiología , Rombencéfalo/citología , Rombencéfalo/embriología , Transducción de Señal , Procesos Estocásticos , Tretinoina/fisiología , Pez Cebra/genética
2.
Int J Mol Sci ; 20(8)2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31010097

RESUMEN

The majority of the human genome is made of transposable elements, giving rise to interspaced repeats, including Long INterspersed Element-1s (LINE-1s or L1s). L1s are active human transposable elements involved in genomic diversity and evolution; however, they can also contribute to genomic instability and diseases. L1s require host factors to complete their life cycles, whereas the host has evolved numerous mechanisms to restrict L1-induced mutagenesis. Restriction mechanisms in somatic cells include methylation of the L1 promoter, anti-viral factors and RNA-mediated processes such as small RNAs. microRNAs (miRNAs or miRs) are small non-coding RNAs that post-transcriptionally repress multiple target genes often found in the same cellular pathways. We have recently established that miR-128 functions as a novel restriction factor inhibiting L1 mobilization in somatic cells. We have further demonstrated that miR-128 functions through a dual mechanism; by directly targeting L1 RNA for degradation and indirectly by inhibiting a cellular co-factor which L1 is dependent on to transpose to new genomic locations (TNPO1). Here, we add another piece to the puzzle of the enigmatic L1 lifecycle. We show that miR-128 also inhibits another key cellular factor, hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), by significantly reducing mRNA and protein levels through direct interaction with the coding sequence (CDS) of hnRNPA1 mRNA. In addition, we demonstrate that repression of hnRNPA1 using hnRNPA1-shRNA significantly decreases de novo L1 retro-transposition and that induced hnRNPA1 expression enhances L1 mobilization. Furthermore, we establish that hnRNPA1 is a functional target of miR-128. Finally, we determine that induced hnRNPA1 expression in miR-128-overexpressing cells can partly rescue the miR-128-induced repression of L1's ability to transpose to different genomic locations. Thus, we have identified an additional mechanism by which miR-128 represses L1 retro-transposition and mediates genomic stability.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Antagomirs/metabolismo , Secuencia de Bases , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1/antagonistas & inhibidores , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Sistemas de Lectura Abierta/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia
3.
Mol Psychiatry ; 24(6): 795-807, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30700803

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressants. They regulate serotonergic neurotransmission, but it remains unclear how altered serotonergic neurotransmission may contribute to the SSRI resistance observed in approximately 30% of major depressive disorder (MDD) patients. Patient stratification based on pharmacological responsiveness and the use of patient-derived neurons may make possible the discovery of disease-relevant neural phenotypes. In our study from a large cohort of well-characterized MDD patients, we have generated induced pluripotent stem cells (iPSCs) from SSRI-remitters and SSRI-nonremitters. We studied serotonergic neurotransmission in patient forebrain neurons in vitro and observed that nonremitter patient-derived neurons displayed serotonin-induced hyperactivity downstream of upregulated excitatory serotonergic receptors, in contrast to what is seen in healthy and remitter patient-derived neurons. Our data suggest that postsynaptic forebrain hyperactivity downstream of SSRI treatment may play a role in SSRI resistance in MDD.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Serotonina/metabolismo , Adulto , Acatisia Inducida por Medicamentos/fisiopatología , Antidepresivos/uso terapéutico , Estudios de Cohortes , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Persona de Mediana Edad , Neuronas , Agitación Psicomotora/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Transmisión Sináptica
4.
PLoS One ; 11(5): e0155421, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27182706

RESUMEN

The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10) with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85%) located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51%) variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies <1% for family studies. The results identified LMNA c.357-2A>G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency.


Asunto(s)
Cardiomiopatía Dilatada/genética , Muerte Súbita Cardíaca/etiología , Heterogeneidad Genética , Lamina Tipo A/genética , Mutación , Sitios de Empalme de ARN , Síndrome del Seno Enfermo/genética , Adulto , Alelos , Biomarcadores , Cardiomiopatía Dilatada/diagnóstico , Análisis Mutacional de ADN , Exoma , Femenino , Perfilación de la Expresión Génica , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Síndrome del Seno Enfermo/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA