Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cells ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38727324

RESUMEN

Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.


Asunto(s)
Rodenticidas , Animales , Ratas , Rodenticidas/toxicidad , Humanos , Vasoconstricción/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
2.
Planta Med ; 90(6): 454-468, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599606

RESUMEN

Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga Mimosa tenuiflora was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied. Most flavanones and flavones were effective CaV1.2 channel blockers with a potency order of (2S)-sakuranetin > eriodictyol-7,3'-methyl ether > quercetin 3-methyl ether > 5,4'-dihydroxy-6,7-dimethoxyflavanone > santin > axillarin > penduletin > kumatakenin, ermanin and viscosine being weak or modest stimulators. Except for eriodictyol 5-O-methyl ether, all the flavonoids were also effective spasmolytic agents of vascular rings, kumatakenin and viscosine also showing an endothelium-dependent activity. (2S)-Sakuranetin also stimulated KCa1.1 channels both in single myocytes and vascular rings. In silico analysis provided interesting insights into the mode of action of (2S)-sakuranetin within both CaV1.2 and KCa1.1 channels. The green propolis of the Caatinga Mimosa tenuiflora is a valuable source of multi-target vasoactive flavonoids: this evidence reinforces its nutraceutical value in the cardiovascular disease prevention arena.


Asunto(s)
Flavonoides , Simulación del Acoplamiento Molecular , Própolis , Vasodilatadores , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Vasodilatadores/farmacología , Vasodilatadores/aislamiento & purificación , Vasodilatadores/química , Animales , Própolis/química , Própolis/farmacología , Mimosa/química , Masculino , Ratas , Fitoalexinas
3.
Food Chem ; 444: 138684, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38359701

RESUMEN

A research platform for food authentication was set up by combining stable isotope ratio analysis, metabolomics by gas and liquid mass-spectrometry and NMR investigations, chemometric analyses for food excellences. This multi-analytical approach was tested on samples of elephant garlic (Allium ampeloprasum L.), a species belonging to the same genus of common garlic (Allium ampeloprasum L.), mainly produced in southern Tuscany-(Allium ampeloprasum). The isotopic composition allowed the product to be geographically characterized. Flavonoids, like (+)-catechin, cinnamic acids, quercetin glycosides were identified. The samples showed also a significant amount of dipeptides, sulphur-containing metabolites and glutathione, the latter of which could be considered a molecular marker of the analyzed elephant garlic. For nutraceutical profiling to reach quality labels, extracts were investigated in specific biological assays, displaying interesting vasorelaxant properties in rat aorta by mediating nitric oxide release from the endothelium and exhibited positive inotropic and negative chronotropic effects in rat perfused heart.


Asunto(s)
Allium , Ajo , Animales , Ratas , Ajo/química , Allium/química , Cebollas/química , Antioxidantes/análisis , Suplementos Dietéticos , Italia
4.
Eur J Pharmacol ; 967: 176400, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331336

RESUMEN

In the search for novel, bi-functional compounds acting as CaV1.2 channel blockers and K+ channel stimulators, which represent an effective therapy for hypertension, 3,3'-O-dimethylquercetin was isolated for the first time from Brazilian Caatinga green propolis. Its effects were investigated through electrophysiological, functional, and computational approaches. In rat tail artery myocytes, 3,3'-O-dimethylquercetin blocked Ba2+ currents through CaV1.2 channels (IBa1.2) in a concentration-dependent manner, with the inhibition being reversed upon washout. The compound also shifted the voltage dependence of the steady-state inactivation curve to more negative potentials without affecting the slope of the inactivation and activation curves. Furthermore, the flavonoid stimulated KCa1.1 channel currents (IKCa1.1). In silico simulations provided additional evidence for the binding of 3,3'-O-dimethylquercetin to KCa1.1 and CaV1.2 channels and elucidated its mechanism of action. In depolarized rat tail artery rings, the flavonoid induced a concentration-dependent relaxation. Moreover, in rat aorta rings its antispasmodic effect was inversely related to the transmembrane K+ gradient. In conclusion, 3,3'-O-dimethylquercetin demonstrates effective in vitro vasodilatory properties, encouraging the exploration of its scaffold to develop novel derivatives for potential use in the treatment of hypertension.


Asunto(s)
Mimosa , Própolis , Ratas , Animales , Vasodilatadores/farmacología , Vasodilatadores/metabolismo , Mimosa/metabolismo , Própolis/farmacología , Músculo Liso Vascular , Miocitos del Músculo Liso , Flavonoides/farmacología , Canales de Calcio Tipo L/metabolismo
5.
Biochem Pharmacol ; 220: 115969, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086489

RESUMEN

Flavonoids, ubiquitously distributed in the plant world, are regularly ingested with diets rich in fruit, vegetables, wine, and tea. During digestion, they are partially absorbed in the stomach. The present work aimed to assess the in vitro effects of quercetin and ten structurally related flavonoids on the rat gastric fundus smooth muscle, focussing on ATP-dependent K+ (Kir6.1) channels, which play a central role in the regulation of resting membrane potential, membrane excitability and, consequently, of gastric motility. Whole-cell currents through Kir6.1 channels (IKir6.1) were recorded with the patch-clamp technique and the mechanical activity of gastric fundus smooth muscle strips was studied under isometric conditions. Galangin ≈ tamarixetin > quercetin > kaempferol > isorhamnetin ≈ luteolin ≈ fisetin > (±)-taxifolin inhibited pinacidil-evoked, glibenclamide-sensitive IKir6.1 in a concentration-dependent manner. Morin, rutin, and myricetin were ineffective. The steric hindrance of the molecule and the number and position of hydroxyl groups on the B ring played an important role in the activity of the molecule. Molecular docking simulations revealed a possible binding site for flavonoids in the C-terminal domain of the Kir6.1 channel subunit SUR2B, in a flexible loop formed by residues 251 to 254 of chains C and D. Galangin and tamarixetin, but not rutin relaxed both high K+- and carbachol-induced contraction of fundus strips in a concentration-dependent manner. Furthermore, both flavonoids shifted to the right the concentration-relaxation curves to either pinacidil or L-cysteine constructed in strips pre-contracted by high K+, rutin being ineffective. In conclusion, IKir6.1 inhibition exerted by dietary flavonoids might counterbalance their myorelaxant activity, affect gastric accommodation or, at least, some stages of digestion.


Asunto(s)
Fundus Gástrico , Vasodilatadores , Ratas , Animales , Pinacidilo/farmacología , Vasodilatadores/farmacología , Fundus Gástrico/metabolismo , Quercetina/farmacología , Simulación del Acoplamiento Molecular , Canales de Potasio/metabolismo , Músculo Liso/metabolismo , Electrofisiología , Rutina , Dieta , Receptores de Sulfonilureas/metabolismo
6.
J Food Sci ; 88(12): 5324-5338, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37961008

RESUMEN

Bio-based products are nowadays useful tools able to affect the productivity and quality of conventionally cultivated crops. Several bio-based products are currently on the market; one of the newest and most promising is the wood distillate (WD) derived from the pyrolysis process of waste biomass after timber. Its foliar application has been widely investigated and shown to promote the antioxidant profile of cultivated crops. WD was used here as additive for the cultivation of tomato (Solanum lycopersicum L.) plants. The application improved quality (chemical) parameters, minerals, polyphenols, and lycopene contents of tomato fruits. The extracts of WD-treated and untreated tomatoes have been chemically and biologically characterized. The 1 H-NMR and ESI-mass spectrometry analyses of the extracts revealed the presence of different fatty acids, amino acids and sugars. In particular, the WD-treated tomatoes showed the presence of pyroglutamic acid and phloridzin derivatives, but also dihydrokaempferol, naringenin glucoside, cinnamic acid, and kaempferol-3-O-glucoside. When tested in cells, the extracts showed a promising anti-inflammatory profile in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the extracts displayed a slight vasorelaxant activity on rat aorta rings (either endothelium-denuded or endothelium-intact) pre-contracted with phenylephrine or potassium chloride. PRACTICAL APPLICATION: Wood distillate has been used for tomato plant growth. Tomatoes showed improved nutritional parameters, and their extracts displayed antioxidant and anti-inflammatory activities.


Asunto(s)
Antioxidantes , Solanum lycopersicum , Antioxidantes/química , Madera/química , Licopeno/análisis , Frutas/química , Antiinflamatorios/análisis
7.
Cells ; 12(8)2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37190105

RESUMEN

Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue that surrounds most mammalian blood vessels. PVAT is a metabolically active, endocrine organ capable of regulating blood vessel tone, endothelium function, vascular smooth muscle cell growth and proliferation, and contributing critically to cardiovascular disease onset and progression. In the context of vascular tone regulation, under physiological conditions, PVAT exerts a potent anticontractile effect by releasing a plethora of vasoactive substances, including NO, H2S, H2O2, prostacyclin, palmitic acid methyl ester, angiotensin 1-7, adiponectin, leptin, and omentin. However, under certain pathophysiological conditions, PVAT exerts pro-contractile effects by decreasing the production of anticontractile and increasing that of pro-contractile factors, including superoxide anion, angiotensin II, catecholamines, prostaglandins, chemerin, resistin, and visfatin. The present review discusses the regulatory effect of PVAT on vascular tone and the factors involved. In this scenario, dissecting the precise role of PVAT is a prerequisite to the development of PVAT-targeted therapies.


Asunto(s)
Peróxido de Hidrógeno , Músculo Liso Vascular , Animales , Humanos , Músculo Liso Vascular/fisiología , Tejido Adiposo/fisiología , Adiponectina , Epoprostenol , Mamíferos
8.
Eur J Pharmacol ; 951: 175786, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37179045

RESUMEN

A role for mitochondrial fission in vascular contraction has been proposed based on the vasorelaxant activity of the dynamin (and mitochondrial fission) inhibitors mdivi-1 and dynasore. However, mdivi-1 is capable to inhibit Ba2+ currents through CaV1.2 channels (IBa1.2), stimulate KCa1.1 channel currents (IKCa1.1), and modulate pathways key to the maintenance of vessel active tone in a dynamin-independent manner. Using a multidisciplinary approach, the present study demonstrates that dynasore, like mdivi-1, is a bi-functional vasodilator, blocking IBa1.2 and stimulating IKCa1.1 in rat tail artery myocytes, as well as promoting relaxation of rat aorta rings pre-contracted by either high K+ or phenylephrine. Conversely, its analogue dyngo-4a, though inhibiting mitochondrial fission triggered by phenylephrine and stimulating IKCa1.1, did not affect IBa1.2 but potentiated both high K+- and phenylephrine-induced contractions. Docking and molecular dynamics simulations identified the molecular basis supporting the different activity of dynasore and dyngo-4a at CaV1.2 and KCa1.1 channels. Mito-tempol only partially counteracted the effects of dynasore and dyngo-4a on phenylephrine-induced tone. In conclusion, the present data, along with previous observations (Ahmed et al., 2022) rise caution for the use of dynasore, mdivi-1, and dyngo-4a as tools to investigate the role of mitochondrial fission in vascular contraction: to this end, a selective dynamin inhibitor and/or a different experimental approach are needed.


Asunto(s)
Dinaminas , Dinámicas Mitocondriales , Ratas , Animales , Dinaminas/metabolismo , Niacinamida/farmacología , Fenilefrina/farmacología
9.
Bioorg Chem ; 131: 106326, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563413

RESUMEN

Morin is a vasorelaxant flavonoid, whose activity is ascribable to CaV1.2 channel blockade that, however, is weak as compared to that of clinically used therapeutic agents. A conventional strategy to circumvent this drawback is to synthesize new derivatives differently decorated and, in this context, morin-derivatives able to interact with CaV1.2 channels were found by employing the potential of PLATO in target fishing and reverse screening. Three different derivatives (5a-c) were selected as promising tools, synthesized, and investigated in in vitro functional studies using rat aorta rings and rat tail artery myocytes. 5a-c were found more effective vasorelaxant agents than the naturally occurring parent compound and antagonized both electro- and pharmaco-mechanical coupling in an endothelium-independent manner. 5a, the series' most potent, reduced also Ca2+ mobilization from intracellular store sites. Furthermore, 5a≈5c > 5b inhibited Ba2+ current through CaV1.2 channels. However, compound 5a caused also a concentration-dependent inhibition of KCa1.1 channel currents.


Asunto(s)
Inteligencia Artificial , Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo L , Flavonoides , Vasodilatación , Vasodilatadores , Animales , Ratas , Flavonoides/farmacología , Vasodilatadores/química , Vasodilatadores/farmacología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo
10.
Mar Drugs ; 20(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36005518

RESUMEN

Sesquiterpenes such as leucodin and the labdane-type diterpene manool are natural compounds endowed with remarkably in vitro vasorelaxant and in vivo hypotensive activities. Given their structural similarity with the sesquiterpene lactone (+)-sclareolide, this molecule was selected as a scaffold to develop novel vasoactive agents. Functional, electrophysiology, and molecular dynamics studies were performed. The opening of the five-member lactone ring in the (+)-sclareolide provided a series of labdane-based small molecules, promoting a significant in vitro vasorelaxant effect. Electrophysiology data identified 7 as a CaV1.2 channel blocker and a KCa1.1 channel stimulator. These activities were also confirmed in the intact vascular tissue. The significant antagonism caused by the CaV1.2 channel agonist Bay K 8644 suggested that 7 might interact with the dihydropyridine binding site. Docking and molecular dynamic simulations provided the molecular basis of the CaV1.2 channel blockade and KCa1.1 channel stimulation produced by 7. Finally, 7 reduced coronary perfusion pressure and heart rate, while prolonging conduction and refractoriness of the atrioventricular node, likely because of its Ca2+ antagonism. Taken together, these data indicate that the labdane scaffold represents a valuable starting point for the development of new vasorelaxant agents endowed with negative chronotropic properties and targeting key pathways involved in the pathophysiology of hypertension and ischemic cardiomyopathy.


Asunto(s)
Diterpenos , Hipertensión , Sitios de Unión , Canales de Calcio Tipo L/metabolismo , Diterpenos/farmacología , Humanos , Lactonas , Vasodilatadores/farmacología
11.
Biochem Pharmacol ; 203: 115205, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940257

RESUMEN

Mdivi-1 is widely used as a pharmacological tool to inhibit dynamin-related protein-1-mediated mitochondrial fission. Whether this compound may interact directly or indirectly with ion channels or cellular pathways fundamental for the regulation of vascular smooth muscle tone remains unknown. The present study aimed to assess the effect of mdivi-1 on CaV1.2 and KCa1.1 channels, both in vitro and in silico as well as on the mechanical activity of rat aorta rings. Mdivi-1 was an effective CaV1.2 channel blocker, docking in a CaV1.2 channel antagonist binding region, stimulated KCa1.1 channel current, binding to a sensing region common to other stimulators, and possibly inhibited the Rho-kinase pathway. These effects contributed to its vasorelaxant activity observed in rings stimulated with high KCl, phenylephrine, or NaF. Neither structurally different dynamin inhibitors nor a stimulator affected the Ca2+ antagonistic and vasorelaxant activities of the compound. However, mito-tempol reduced its vasorelaxant potency towards phenylephrine. Finally, mdivi-1 antagonized mitochondrial fission triggered by phenylephrine. In conclusion, mdivi-1 is an effective in vitro vasorelaxant agent at concentrations routinely employed to block dynamin-related protein-1. Ion channels and pathways key to the maintenance of vessel active tone are involved in this mechanism. These yet undiscovered off-target effects raise caution for the interpretation of mitochondrial fission signalling.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Dinámicas Mitocondriales , Músculo Liso Vascular , Quinazolinonas/farmacología , Animales , Dinaminas/metabolismo , Canales Iónicos , Músculo Liso Vascular/metabolismo , Fenilefrina/farmacología , Ratas , Vasodilatadores/farmacología
12.
Molecules ; 27(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889386

RESUMEN

Hypertension is a risk factor for cardiovascular diseases, which are the main cause of morbidity and mortality in the world. In the search for new molecules capable of targeting KCa1.1 and CaV1.2 channels, the expression of which is altered in hypertension, the in vitro vascular effects of a series of flavonoids extracted from the heartwoods, roots, and leaves of Dalbergia tonkinensis Prain, widely used in traditional medicine, were assessed. Rat aorta rings, tail artery myocytes, and docking and molecular dynamics simulations were used to analyse their effect on these channels. Formononetin, orobol, pinocembrin, and biochanin A showed a marked myorelaxant activity, particularly in rings stimulated by moderate rather than high KCl concentrations. Ba2+ currents through CaV1.2 channels (IBa1.2) were blocked in a concentration-dependent manner by sativanone, 3'-O-methylviolanone, pinocembrin, and biochanin A, while it was stimulated by ambocin. Sativanone, dalsissooside, and eriodictyol inhibited, while tectorigenin 7-O-[ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside], ambocin, butin, and biochanin A increased IKCa1.1. In silico analyses showed that biochanin A, sativanone, and pinocembrin bound with high affinity in target-sensing regions of both channels, providing insight into their potential mechanism of action. In conclusion, Dalbergia tonkinensis is a valuable source of mono- and bifunctional, vasoactive scaffolds for the development of novel antihypertensive drugs.


Asunto(s)
Dalbergia , Hipertensión , Animales , Pueblo Asiatico , Humanos , Extractos Vegetales/farmacología , Ratas , Vasodilatadores/farmacología
13.
Pharmacol Res ; 180: 106231, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35462011

RESUMEN

Several studies demonstrate the beneficial effects of dietary flavonoids on the cardiovascular system. Since perivascular adipose tissue (PVAT) plays an active role in the regulation of vascular tone in both health and diseases, the present study aimed to assess the functional interaction between PVAT and flavonoids in vitro on rat aorta rings. Several flavonoids proved to display both antispasmodic and spasmolytic activities towards noradrenaline-induced contraction of rings deprived of PVAT (-PVAT). However, on PVAT-intact (+PVAT) rings, both actions of some flavonoids were lost and/or much decreased. In rings-PVAT, the superoxide donor pyrogallol mimicked the effect of PVAT, while in rings+PVAT the antioxidant mito-tempol restored both activities of the two most representative flavonoids, namely apigenin and chrysin. The Rho-kinase inhibitor fasudil, or apigenin and chrysin concentration-dependently relaxed the vessel active tone induced by the Rho-kinase activator NaF; the presence of PVAT counteracted apigenin spasmolytic activity, though only in the absence of mito-tempol. Similar results were obtained in rings pre-contracted by phenylephrine. Finally, when ß3 receptors were blocked by SR59230A, vasorelaxation caused by both flavonoids was unaffected by PVAT. These data are consistent with the hypothesis that both noradrenaline and apigenin activated adipocyte ß3 receptors with the ensuing release of mitochondrial superoxide anion, which once diffused toward myocytes, counteracted flavonoid vasorelaxant activity. This phenomenon might limit the beneficial health effects of dietary flavonoids in patients affected by either obesity and/or other pathological conditions characterized by sympathetic nerve overactivity.


Asunto(s)
Superóxidos , Quinasas Asociadas a rho , Tejido Adiposo , Animales , Aorta , Apigenina , Flavonoides/farmacología , Humanos , Norepinefrina/farmacología , Parasimpatolíticos , Ratas
14.
Antioxidants (Basel) ; 11(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35326088

RESUMEN

Extra virgin olive oil (EVOO) is the typical source of fats in the Mediterranean diet. While fatty acids are essential for the EVOO nutraceutical properties, multiple biological activities are also due to the presence of polyphenols. In this work, autochthonous Tuscany EVOOs were chemically characterized and selected EVOO samples were extracted to obtain hydroalcoholic phytocomplexes, which were assayed to establish their anti-inflammatory and vasorelaxant properties. The polar extracts were characterized via 1H-NMR and UHPLC-HRMS to investigate the chemical composition and assayed in CaCo-2 cells exposed to glucose oxidase or rat aorta rings contracted by phenylephrine. Apigenin and luteolin were found as representative flavones; other components were pinoresinol, ligstroside, and oleuropein. The extracts showed anti-inflammatory and antioxidant properties via modulation of NF-κB and Nrf2 pathways, respectively, and good vasorelaxant activity, both in the presence and absence of an intact endothelium. In conclusion, this study evaluated the nutraceutical properties of autochthonous Tuscany EVOO cv., which showed promising anti-inflammatory and vasorelaxant effects.

15.
Front Pharmacol ; 13: 831791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321325

RESUMEN

Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings.

16.
Bioorg Med Chem ; 59: 116670, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202967

RESUMEN

Norbormide [5-(α-hydroxy-α-2-pyridylbenzyl)-7-(α-2-pyridylbenzylidene)-5-norbornene-2,3-dicarboximide] (NRB, 1), an existing but infrequently used rodenticide, is known to be uniquely toxic to rats, but relatively harmless to other rodents and mammals. As a vasoactive agent, NRB induces a species-specific vasocontractile effect that is restricted to the peripheral arteries of the rat. Despite the precise mechanisms behind this phenomenon having yet to be fully clarified, it is postulated that the molecular target of NRB could be located within the plasma membrane of rat peripheral artery myocytes (e.g. rat caudal artery myocytes). As such, the primary objective of this study was to develop a fluorescently labelled derivative of NRB to investigate its subcellular distribution/localization in both NRB-sensitive (freshly isolated rat caudal artery myocytes, FIRCAMs) and NRB-insensitive (human hepatic stellate, LX2) cells. Of the examples prepared, lead structure endo-NRB-NBD-bPA subsequently demonstrated retention of the parent toxicant's pharmacological profile (in terms of its ability to induce both a vasocontractile response in rat caudal artery rings in vitro, and a lethal end-point in rats in vivo). Endo-NRB-NBD-bPA was also shown to be significantly less permeable (an integral feature in the design of fluorescent probes targeting cell-surface receptors) to both LX2 cells and FIRCAMs. Disappointingly, no fluorescence could be observed on the plasma membrane of FIRCAMs stained with endo-NRB-NBD-bPA.


Asunto(s)
Colorantes Fluorescentes , Norbornanos , Animales , Colorantes Fluorescentes/metabolismo , Hígado/metabolismo , Mamíferos , Norbornanos/química , Norbornanos/metabolismo , Norbornanos/farmacología , Ratas
17.
Vascul Pharmacol ; 143: 106969, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149209

RESUMEN

Sdox is a synthetic H2S-releasing doxorubicin (Dox) less cardiotoxic and more effective than Dox in pre-clinical, Dox-resistant tumour models. The well-known anthracycline vascular toxicity, however, might limit Sdox clinical use. This study aimed at evaluating Sdox vascular toxicity in vitro, using Dox as reference compound. Both vascular smooth muscle A7r5 and endothelial EA.hy926 cells were more sensitive to Dox than Sdox, although both drugs equally increased intracellular free radical levels. Sdox released H2S in both cell lines. The H2S scavenger hydroxocobalamin partially reverted Sdox-induced cytotoxicity in A7r5, but not in EA.hy926 cells, suggesting a role for H2S in smooth muscle cell death. Markers of Sdox-induced apoptosis were significantly lower than, in A7r5 cells, and comparable to those of Dox in EA.hy926 cells. In A7r5 cells, Dox increased the activity of caspase 3, 8, and 9, Sdox affecting only that of caspase 3. Moreover, both drugs induced comparable DNA damage in A7r5 cells, while Sdox was less toxic than Dox in Ea.hy926 cells. In fresh aorta rings, only Dox weakly increased phenylephrine-induced contraction when endothelium was present. In rings cultured with both drugs for 7 days, Sdox blunted phenylephrine- and high K+-induced contractions though at a concentration 10-fold higher than that of Dox. In conclusion, Sdox may represent the prototype of an innovative anthracycline, effective against Dox-resistant tumours, displaying a more favourable vascular toxicity profile compared to the parent compound.


Asunto(s)
Antraciclinas , Antibióticos Antineoplásicos , Antraciclinas/metabolismo , Antraciclinas/farmacología , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Músculo Liso Vascular , Miocitos del Músculo Liso/metabolismo
18.
Eur J Pharmacol ; 918: 174778, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35093322

RESUMEN

Quercetin, a flavonoid abundantly present in the Mediterranean diet, is considered a vasodilator despite its recognized capability to stimulate vascular CaV1.2 channel current (ICa1.2). The present study was undertaken to assess its possible vasocontractile activity. Functional and electrophysiology experiments were performed in vitro on rat aorta rings and tail artery myocytes along with an in-depth molecular modelling analysis. The CaV1.2 channel stimulator (S)-(-)-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate (Bay K 8644) was used as reference compound. Quercetin and Bay K 8644 caused a significant leftward shift of KCl concentration-response curve. Neither agent affected basal muscle tone, though in rings pre-treated with thapsigargin or 15 mM KCl they caused a strong, concentration-dependent contraction. Both quercetin and Bay K 8644 potentiated the response to Ca2+ in weakly depolarised rings. At high KCl concentrations, however, quercetin caused vasorelaxation. While Bay K 8644 stimulated ICa1.2, this effect being sustained with time, quercetin-induced stimulation was transient, although the molecule in solution underwent only marginal oxidation. Quercetin transient stimulation was not affected by pre-treatment with isoprenaline, sodium nitroprusside, or dephostatin; however, it converted to a sustained one in myocytes pre-incubated with Gö6976. Classical molecular dynamics simulations revealed that quercetin and Bay K 8644 formed hydrogen bonds with target sensing residues of CaV1.2 channel favouring the inactivated conformation. In conclusion, quercetin-induced stimulation of ICa1.2 promoted vasocontraction when Ca2+ buffering function of sarcoplasmic reticulum was impaired and/or smooth muscle cell membrane was moderately depolarised, as it may occur under certain pathological conditions.


Asunto(s)
Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Arterias , Canales de Calcio Tipo L/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular , Quercetina/farmacología , Vasodilatación/efectos de los fármacos , Animales , Antioxidantes/farmacología , Arterias/efectos de los fármacos , Arterias/patología , Arterias/fisiología , Agonistas de los Canales de Calcio/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Simulación de Dinámica Molecular , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Ratas , Vasodilatadores/farmacología
20.
Eur J Pharmacol ; 899: 174030, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33727059

RESUMEN

The cardiac action potential is regulated by several ion channels. Drugs capable to block these channels, in particular the human ether-à-go-go-related gene (hERG) channel, also known as KV11.1 channel, may lead to a potentially lethal ventricular tachyarrhythmia called "Torsades de Pointes". Thus, evaluation of the hERG channel off-target activity of novel chemical entities is nowadays required to safeguard patients as well as to avoid attrition in drug development. Flavonoids, a large class of natural compounds abundantly present in food, beverages, herbal medicines, and dietary food supplements, generally escape this assessment, though consumed in consistent amounts. Continuously growing evidence indicates that these compounds may interact with the hERG channel and block it. The present review, by examining numerous studies, summarizes the state-of-the-art in this field, describing the most significant examples of direct and indirect inhibition of the hERG channel current operated by flavonoids. A description of the molecular interactions between a few of these natural molecules and the Rattus norvegicus channel protein, achieved by an in silico approach, is also presented.


Asunto(s)
Canal de Potasio ERG1/antagonistas & inhibidores , Flavonoides/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Bloqueadores de los Canales de Potasio/toxicidad , Torsades de Pointes/inducido químicamente , Potenciales de Acción , Animales , Canal de Potasio ERG1/química , Canal de Potasio ERG1/metabolismo , Humanos , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/metabolismo , Conformación Proteica , Medición de Riesgo , Factores de Riesgo , Relación Estructura-Actividad , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA