Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cells ; 13(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891108

RESUMEN

Authors have demonstrated that apoptosis activation is a pathway related to cartilage degradation characteristics of the OA process. Autophagy is an adaptive response to protect cells from various environmental changes, and defects in autophagy are linked to cell death. In this sense, decreased autophagy of chondrocytes has been observed in OA articular cartilage. The aim of this work was to study the role of OA mitochondria in apoptosis, autophagy, and senescence, using OA and Normal (N) transmitochondrial cybrids. Results: OA cybrids incubated with menadione showed a higher percentage of late apoptosis and necrosis than N cybrids. Stimulation of cybrids with staurosporine and IL-1ß showed that OA cybrids were more susceptible to undergoing apoptosis than N cybrids. An analysis of the antioxidant response using menadione on gene expression revealed a lower expression of nuclear factor erythroid 2-like 2 and superoxide dismutase 2 in OA than N cybrids. Activation of microtubule-associated protein 1A/1B-light chain 3 was reduced in OA compared to N cybrids. However, the percentage of senescent cells was higher in OA than N cybrids. Conclusion: This work suggests that mitochondria from OA patients could be involved in the apoptosis, autophagy, and senescence of chondrocytes described in OA cartilage.


Asunto(s)
Apoptosis , Autofagia , Senescencia Celular , Condrocitos , Mitocondrias , Osteoartritis , Humanos , Osteoartritis/patología , Osteoartritis/metabolismo , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Factor 2 Relacionado con NF-E2/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Anciano , Interleucina-1beta/metabolismo , Masculino , Persona de Mediana Edad , Vitamina K 3/farmacología , Femenino
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256951

RESUMEN

Osteoarthritis (OA) is a chronic joint disease leading to cartilage loss and reduction in the joint space which results in pain. The current pharmacological treatment of OA is inadequate and pharmacological interventions focus on symptom management. APPA, a combination of apocynin (AP) and paeonol (PA), is a potential drug for treating OA. The aim of this study was to analyze the effects of APPA on the modulation of the inflammatory response in chondrocytes. Samples were incubated with IL-1ß and APPA, and their responses to proinflammatory cytokines, catabolic mediators and redox responses were then measured. The effect of APPA on mitogenesis was also evaluated. Results show that APPA attenuated the expression of IL-8, TNF-α, MMP-3, MMP-13, SOD-2 and iNOS, resulting in the protection of human articular cartilage. APPA decreased PGC-1α gene expression induced by IL-1ß. APPA did not modulate the gene expression of Mfn2, Sirt-1 or Sirt-3. The overall findings indicate that APPA may be an effective treatment for OA by targeting several of the pathways involved in OA pathogenesis.

3.
Toxicon ; 235: 107325, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838004

RESUMEN

The consumption of Ipomoea carnea produces a neurological syndrome in animals. The toxic principles of I. carnea are the alkaloids swainsonine (SW) and calystegines B1, B2, B3 and C1. In this study, we investigated the cytotoxicity of an alkaloid extract of Ipomoea carnea (AEE) and natural swainsonine (SW) isolated from Astragalus lentiginosus (25-1000 µM of SW) for 48 h in a glioma cell line. Although the natural SW did not induce any changes in cell viability, the AEE exhibited a dose dependent cytotoxic effect and release of lactate dehydrogenase (LDH) indicative of cytolysis. In order to evaluate the morphological changes involved, cells were examined using phase contrast and fluorescence microscopy with acridine orange-ethidium bromide staining. The AEE caused a cell death compatible with necrosis, whereas exposure to 1000 µM of SW resulted in cytoplasmic vacuolation. Immunocytochemical studies revealed that astrocytes treated with 150 µM of AEE from I. carnea or 1000 µM of SW exhibited morphological characteristics of cell activation. These findings suggest that swainsonine would not be the only component present in the AEE of I. carnea responsible for in vitro cytotoxicity. Calystegines might also play a role in acting synergistically and triggering cell death through necrosis.


Asunto(s)
Alcaloides , Antineoplásicos , Ipomoea , Animales , Swainsonina/toxicidad , Alcaloides/farmacología , Neuroglía , Extractos Vegetales/toxicidad , Necrosis
4.
Ann Rheum Dis ; 82(7): 974-984, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024296

RESUMEN

OBJECTIVES: To identify mitochondrial DNA (mtDNA) genetic variants associated with the risk of rapid progression of knee osteoarthritis (OA) and to characterise their functional significance using a cellular model of transmitochondrial cybrids. METHODS: Three prospective cohorts contributed participants. The osteoarthritis initiative (OAI) included 1095 subjects, the Cohort Hip and Cohort Knee included 373 and 326 came from the PROspective Cohort of Osteoarthritis from A Coruña. mtDNA variants were screened in an initial subset of 450 subjects from the OAI by in-depth sequencing of mtDNA. A meta-analysis of the three cohorts was performed. A model of cybrids was constructed to study the functional consequences of harbouring the risk mtDNA variant by assessing: mtDNA copy number, mitochondrial biosynthesis, mitochondrial fission and fusion, mitochondrial reactive oxygen species (ROS), oxidative stress, autophagy and a whole transcriptome analysis by RNA-sequencing. RESULTS: mtDNA variant m.16519C is over-represented in rapid progressors (combined OR 1.546; 95% CI 1.163 to 2.054; p=0.0027). Cybrids with this variant show increased mtDNA copy number and decreased mitochondrial biosynthesis; they produce higher amounts of mitochondrial ROS, are less resistant to oxidative stress, show a lower expression of the mitochondrial fission-related gene fission mitochondrial 1 and an impairment of autophagic flux. In addition, its presence modulates the transcriptome of cybrids, especially in terms of inflammation, where interleukin 6 emerges as one of the most differentially expressed genes. CONCLUSIONS: The presence of the mtDNA variant m.16519C increases the risk of rapid progression of knee OA. Among the most modulated biological processes associated with this variant, inflammation and negative regulation of cellular process stand out. The design of therapies based on the maintenance of mitochondrial function is recommended.


Asunto(s)
ADN Mitocondrial , Osteoartritis de la Rodilla , Humanos , ADN Mitocondrial/genética , Osteoartritis de la Rodilla/genética , Especies Reactivas de Oxígeno , Estudios Prospectivos , Mitocondrias/genética , Inflamación/metabolismo
5.
Physiol Rev ; 103(3): 1965-2038, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796099

RESUMEN

Pregnancy is established during the periconceptional period as a continuum beginning with blastocyst attachment to the endometrial epithelial surface followed by embryo invasion and placenta formation. This period sets the foundation for the child and mother's health during pregnancy. Emerging evidence indicates that prevention of downstream pathologies in both the embryo/newborn and pregnant mother may be possible at this stage. In this review, we discuss current advances in the periconceptional space, including the preimplantation human embryo and maternal endometrium. We also discuss the role of the maternal decidua, the periconceptional maternal-embryonic interface, the dialogue between these elements, and the importance of the endometrial microbiome in the implantation process and pregnancy. Finally, we discuss the myometrium in the periconceptional space and review its role in determining pregnancy health.


Asunto(s)
Implantación del Embrión , Endometrio , Embarazo , Femenino , Niño , Recién Nacido , Humanos , Blastocisto , Placenta
6.
Bone Joint Res ; 12(1): 46-57, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36647698

RESUMEN

AIMS: After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA. METHODS: Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1ß was assessed. RESULTS: Coexpression of both transgenes (SV40 and hTERT) were observed in the nuclei of transduced chondrocytes. Generated chondrocyte cell lines showed a high proliferation capacity and less than 2% of senescent cells. These cell lines were able to form 3D aggregates analogous to those generated by primary articular chondrocytes, but were unsuccessful in synthesizing cartilage-like tissue when seeded on type I collagen sponges. However, generated chondrocyte cell lines maintained the potential to respond to IL-1ß stimulation. CONCLUSION: Through SV40LT and hTERT transduction, we successfully immortalized chondrocytes. These immortalized chondrocytes were able to overcome senescence in vitro, but were incapable of synthesizing cartilage-like tissue under the experimental conditions. Nonetheless, these chondrocyte cell lines could be advantageous for OA investigation since, similarly to primary articular chondrocytes, they showed capacity to upregulate inflammatory mediators in response to the IL-1ß cytokine.Cite this article: Bone Joint Res 2023;12(1):46-57.

7.
Sci Rep ; 12(1): 21661, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522407

RESUMEN

Fusarium circinatum, a fungal pathogen deadly to many Pinus species, can cause significant economic and ecological losses, especially if it were to become more widely established in Europe. Early detection tools with high-throughput capacity can increase our readiness to implement mitigation actions against new incursions. This study sought to develop a disease detection method based on volatile organic compound (VOC) emissions to detect F. circinatum on different Pinus species. The complete pipeline applied here, entailing gas chromatography-mass spectrometry of VOCs, automated data analysis and machine learning, distinguished diseased from healthy seedlings of Pinus sylvestris and Pinus radiata. In P. radiata, this distinction was possible even before the seedlings became visibly symptomatic, suggesting the possibility for this method to identify latently infected, yet healthy looking plants. Pinus pinea, which is known to be relatively resistant to F. circinatum, remained asymptomatic and showed no changes in VOCs over 28 days. In a separate analysis of in vitro VOCs collected from different species of Fusarium, we showed that even closely related Fusarium spp. can be readily distinguished based on their VOC profiles. The results further substantiate the potential for volatilomics to be used for early disease detection and diagnostic recognition.


Asunto(s)
Fusarium , Pinus , Compuestos Orgánicos Volátiles , Enfermedades de las Plantas/microbiología , Pinus/microbiología
8.
Antioxidants (Basel) ; 11(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35453313

RESUMEN

Different findings indicate that type 2 diabetes is an independent risk factor for osteoarthritis (OA). However, the mechanisms underlying the connection between both diseases remain unclear. Changes in the balance of hydrogen sulphide (H2S) are thought to play an important role in the pathogenesis of diabetes and its complications, although its role is still controversial. In this study, we examined the modulation of H2S levels in serum and chondrocytes from OA diabetic (DB) and non-diabetic (non-DB) patients and in cells under glucose stress, in order to elucidate whether impairment in H2S-mediated signalling could participate in the onset of DB-related OA. Here, we identified a reduction in H2S synthesis in the cartilage from OA-DB patients and in cells under glucose stress, which is associated with hyperglycaemia-mediated dysregulation of chondrocyte metabolism. In addition, our results indicate that H2S is an inductor of the Nrf-2/HO-1 signalling pathway in cartilage, but is also a downstream target of Nrf-2 transcriptional activity. Thereby, impairment of the H2S/Nrf-2 axis under glucose stress or DB triggers chondrocyte catabolic responses, favouring the disruption of cartilage homeostasis that characterizes OA pathology. Finally, our findings highlight the benefits of the use of exogeneous sources of H2S in the treatment of DB-OA patients, and warrant future clinical studies.

9.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35328777

RESUMEN

Osteoarthritis (OA) is a chronic disease that affects articular cartilage, causing its degeneration. Although OA is one of the most prevalent pathologies globally, there are no definitive treatments available. Recently, research has focused on elucidating the complex interplay that takes place between inflammatory processes and epigenetic regulation, showing that histone post-translational modifications (PTMs) can exert a pronounced effect on the expression of OA-related genes. OA chondrocytes enhance the production of interleukin 1ß (IL-1ß) and interleukin 8 (IL-8), which are epigenetically regulated. These cytokines upregulate the synthesis of matrix metalloproteinases (MMPs) and aggrecanases, which promote the extracellular matrix (ECM) destruction. This motivates the study of histone PTMs to investigate the epigenetic regulation of proinflammatory molecules, but the absence of specific protocols to extract histones from human articular cartilage has complicated this task. The lack of effective methods can be explained by the structural complexity and low cellularity of this tissue, which are responsible for the biomechanical properties that allow the movement of the joint but also complicate histone isolation. Here, we provide a histone extraction procedure specifically adapted for cryopreserved human articular cartilage that can be useful to understand epigenetic regulation in OA and accelerate the search for novel strategies.


Asunto(s)
Cartílago Articular , Osteoartritis , Cartílago Articular/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Epigénesis Genética , Histonas/metabolismo , Humanos , Interleucina-1beta/metabolismo , Osteoartritis/metabolismo
10.
Am J Obstet Gynecol ; 226(2S): S886-S894, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33007270

RESUMEN

Preeclampsia is a major obstetrical complication with short- and long-term life-threatening consequences for both mother and child. Shallow cytotrophoblast invasion through the uterine decidua into the spiral arteries is implicated in the pathogenesis of preeclampsia, although the cause of deficient arterial invasion remains unknown. Research that is focused on the "soil"-the maternal decidua-highlights the importance of this poorly understood but influential uterine layer. Decidualization of endometrial cells regulates embryo invasion, which is essential for spiral artery remodeling and establishing the maternal-fetal interface. Exploration of the association between impaired decidualization and preeclampsia revealed suboptimal endometrial maturation and uterine natural killer cells present in the decidua before preeclampsia development. Furthermore, decidualization defects in the endometrium of women with severe preeclampsia, characterized by impaired cytotrophoblast invasion, were detected at the time of delivery and persisted 5 years after the affected pregnancy. Recently, a maternal deficiency of annexin A2 expression was found to influence aberrant decidualization and shallow cytotrophoblast invasion, suggesting that decidualization resistance, which is a defective endometrial cell differentiation during the menstrual cycle, could underlie shallow trophoblast invasion and the poor establishment of the maternal-fetal interface. Based on these findings, the transcriptional signature in the endometrium that promotes decidualization deficiency could be detected before (or after) conception. This would serve to identify women at risk of developing severe preeclampsia and aid the development of therapies focused on improving decidualization, perhaps also preventing severe preeclampsia. Here, we discuss decidualization deficiency as a contributor to the pathogenesis of pregnancy disorders with particular attention to severe preeclampsia. We also review current diagnostic strategies and discuss future directions in diagnostic methods based on decidualization.


Asunto(s)
Decidua/fisiopatología , Preeclampsia/fisiopatología , Anexina A2/genética , Anexina A2/metabolismo , Decidua/metabolismo , Diagnóstico Precoz , Endometrio/patología , Femenino , Humanos , Placentación/fisiología , Preeclampsia/diagnóstico , Embarazo , Trofoblastos/fisiología
11.
Elife ; 102021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34709177

RESUMEN

Background: Decidualization of the uterine mucosa drives the maternal adaptation to invasion by the placenta. Appropriate depth of placental invasion is needed to support a healthy pregnancy; shallow invasion is associated with the development of severe preeclampsia (sPE). Maternal contribution to sPE through failed decidualization is an important determinant of placental phenotype. However, the molecular mechanism underlying the in vivo defect linking decidualization to sPE is unknown. Methods: Global RNA sequencing was applied to obtain the transcriptomic profile of endometrial biopsies collected from nonpregnant women who suffer sPE in a previous pregnancy and women who did not develop this condition. Samples were randomized in two cohorts, the training and the test set, to identify the fingerprinting encoding defective decidualization in sPE and its subsequent validation. Gene Ontology enrichment and an interaction network were performed to deepen in pathways impaired by genetic dysregulation in sPE. Finally, the main modulators of decidualization, estrogen receptor 1 (ESR1) and progesterone receptor B (PGR-B), were assessed at the level of gene expression and protein abundance. Results: Here, we discover the footprint encoding this decidualization defect comprising 120 genes-using global gene expression profiling in decidua from women who developed sPE in a previous pregnancy. This signature allowed us to effectively segregate samples into sPE and control groups. ESR1 and PGR were highly interconnected with the dynamic network of the defective decidualization fingerprint. ESR1 and PGR-B gene expression and protein abundance were remarkably disrupted in sPE. Conclusions: Thus, the transcriptomic signature of impaired decidualization implicates dysregulated hormonal signaling in the decidual endometria in women who developed sPE. These findings reveal a potential footprint that could be leveraged for a preconception or early prenatal screening of sPE risk, thus improving prevention and early treatments. Funding: This work has been supported by the grant PI19/01659 (MCIU/AEI/FEDER, UE) from the Spanish Carlos III Institute awarded to TGG. NCM was supported by the PhD program FDGENT/2019/008 from the Spanish Generalitat Valenciana. IMB was supported by the PhD program PRE2019-090770 and funding was provided by the grant RTI2018-094946-B-100 (MCIU/AEI/FEDER, UE) from the Spanish Ministry of Science and Innovation with CS as principal investigator. This research was funded partially by Igenomix S.L.


Asunto(s)
Decidua/patología , Receptor alfa de Estrógeno/genética , Preeclampsia/genética , Receptores de Progesterona/genética , Transducción de Señal , Adulto , Decidua/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Preeclampsia/metabolismo , Embarazo , Receptores de Progesterona/metabolismo , Adulto Joven
12.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34639008

RESUMEN

Background: Mesenchymal stromal cells (MSCs) have the capacity for self-renewal and multi-differentiation, and for this reason they are considered a potential cellular source in regenerative medicine of cartilage and bone. However, research on this field is impaired by the predisposition of primary MSCs to senescence during culture expansion. Therefore, the aim of this study was to generate and characterize immortalized MSC (iMSC) lines from aged donors. Methods: Primary MSCs were immortalized by transduction of simian virus 40 large T antigen (SV40LT) and human telomerase reverse transcriptase (hTERT). Proliferation, senescence, phenotype and multi-differentiation potential of the resulting iMSC lines were analyzed. Results: MSCs proliferate faster than primary MSCs, overcome senescence and are phenotypically similar to primary MSCs. Nevertheless, their multi-differentiation potential is unbalanced towards the osteogenic lineage. There are no clear differences between osteoarthritis (OA) and non-OA iMSCs in terms of proliferation, senescence, phenotype or differentiation potential. Conclusions: Primary MSCs obtained from elderly patients can be immortalized by transduction of SV40LT and hTERT. The high osteogenic potential of iMSCs converts them into an excellent cellular source to take part in in vitro models to study bone tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas/citología , Donantes de Tejidos , Anciano , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Expresión Génica , Humanos , Inmunohistoquímica , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Telomerasa , Transducción Genética
13.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208590

RESUMEN

Osteoarthritis (OA) is the most common musculoskeletal disorder causing a great disability and a reduction in the quality of life. In OA, articular chondrocytes (AC) and synovial fibroblasts (SF) release innate-derived immune mediators that initiate and perpetuate inflammation, inducing cartilage extracellular matrix (ECM) degradation. Given the lack of therapies for the treatment of OA, in this study, we explore biomarkers that enable the development of new therapeutical approaches. We analyze the set of secreted proteins in AC and SF co-cultures by stable isotope labeling with amino acids (SILAC). We describe, for the first time, 115 proteins detected in SF-AC co-cultures stimulated by fibronectin fragments (Fn-fs). We also study the role of the vasoactive intestinal peptide (VIP) in this secretome, providing new proteins involved in the main events of OA, confirmed by ELISA and multiplex analyses. VIP decreases proteins involved in the inflammatory process (CHI3L1, PTX3), complement activation (C1r, C3), and cartilage ECM degradation (DCN, CTSB and MMP2), key events in the initiation and progression of OA. Our results support the anti-inflammatory and anti-catabolic properties of VIP in rheumatic diseases and provide potential new targets for OA treatment.


Asunto(s)
Condrocitos/metabolismo , Fibroblastos/metabolismo , Osteoartritis/metabolismo , Proteoma , Proteómica , Membrana Sinovial/citología , Péptido Intestinal Vasoactivo/metabolismo , Biomarcadores , Condrocitos/efectos de los fármacos , Técnicas de Cocultivo , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Osteoartritis/etiología , Osteoartritis/patología , Proteómica/métodos , Péptido Intestinal Vasoactivo/farmacología
14.
Cytotherapy ; 23(5): 399-410, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727013

RESUMEN

With the redefinition of osteoarthritis (OA) and the understanding that the joint behaves as an organ, OA is now considered a systemic illness with a low grade of chronic inflammation. Mitochondrial dysfunction is well documented in OA and has the capacity to alter chondrocyte and synoviocyte function. Transmitochondrial cybrids are suggested as a useful cellular model to study mitochondrial biology in vitro, as they carry different mitochondrial variants with the same nuclear background. The aim of this work was to study mitochondrial and metabolic function of cybrids with mitochondrial DNA from healthy (N) and OA donors. In this work, the authors demonstrate that cybrids from OA patients behave differently from cybrids from N donors in several mitochondrial parameters. Furthermore, OA cybrids behave similarly to OA chondrocytes. These results enhance our understanding of the role of mitochondria in the degeneration process of OA and present cybrids as a useful model to study OA pathogenesis.


Asunto(s)
ADN Mitocondrial , Osteoartritis , Condrocitos , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Osteoartritis/genética
15.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050005

RESUMEN

Osteoarthritis (OA) is the most common articular chronic disease. However, its current treatment is limited and mostly symptomatic. Hydrogen sulfide (H2S) is an endogenous gas with recognized physiological activities. The purpose here was to evaluate the effects of the intraarticular administration of a slow-releasing H2S compound (GYY-4137) on an OA experimental model. OA was induced in Wistar rats by the transection of medial collateral ligament and the removal of the medial meniscus of the left joint. The animals were randomized into three groups: non-treated and intraarticularly injected with saline or GYY-4137. Joint destabilization induced articular thickening (≈5% increment), the loss of joint mobility and flexion (≈12-degree angle), and increased levels of pain (≈1.5 points on a scale of 0 to 3). Animals treated with GYY-4137 presented improved motor function of the joint, as well as lower pain levels (≈75% recovery). We also observed that cartilage deterioration was attenuated in the GYY-4137 group (≈30% compared with the saline group). Likewise, these animals showed a reduced presence of pro-inflammatory mediators (cyclooxygenase-2, inducible nitric oxide synthase, and metalloproteinase-13) and lower oxidative damage in the cartilage. The increment of the nuclear factor-erythroid 2-related factor 2 (Nrf-2) levels and Nrf-2-regulated gene expression (≈30%) in the GYY-4137 group seem to be underlying its chondroprotective effects. Our results suggest the beneficial impact of the intraarticular administration of H2S on experimental OA, showing a reduced cartilage destruction and oxidative damage, and supporting the use of slow H2S-producing molecules as a complementary treatment in OA.


Asunto(s)
Artralgia/tratamiento farmacológico , Sulfuro de Hidrógeno/administración & dosificación , Morfolinas/administración & dosificación , Compuestos Organotiofosforados/administración & dosificación , Osteoartritis/tratamiento farmacológico , Sustancias Protectoras/administración & dosificación , Animales , Cartílago Articular/metabolismo , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Intraarticulares , Metaloproteinasa 13 de la Matriz/metabolismo , Actividad Motora/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Prueba de Desempeño de Rotación con Aceleración Constante , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
16.
Stem Cells Int ; 2020: 5726947, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612662

RESUMEN

Human bone marrow-derived mesenchymal stromal cells (MSCs) obtained from aged patients are prone to senesce and diminish their differentiation potential, therefore limiting their usefulness for osteochondral regenerative medicine approaches or to study age-related diseases, such as osteoarthiritis (OA). MSCs can be transduced with immortalizing genes to overcome this limitation, but transduction of primary slow-dividing cells has proven to be challenging. Methods for enhancing transduction efficiency (such as spinoculation, chemical adjuvants, or transgene expression inductors) can be used, but several parameters must be adapted for each transduction system. In order to develop a transduction method suitable for the immortalization of MSCs from aged donors, we used a spinoculation method. Incubation parameters of packaging cells, speed and time of centrifugation, and valproic acid concentration to induce transgene expression have been adjusted. In this way, four immortalized MSC lines (iMSC#6, iMSC#8, iMSC#9, and iMSC#10) were generated. These immortalized MSCs (iMSCs) were capable of bypassing senescence and proliferating at a higher rate than primary MSCs. Characterization of iMSCs showed that these cells kept the expression of mesenchymal surface markers and were able to differentiate towards osteoblasts, adipocytes, and chondrocytes. Nevertheless, alterations in the CD105 expression and a switch of cell fate-commitment towards the osteogenic lineage have been noticed. In conclusion, the developed transduction method is suitable for the immortalization of MSCs derived from aged donors. The generated iMSC lines maintain essential mesenchymal features and are expected to be useful tools for the bone and cartilage regenerative medicine research.

17.
Cells ; 9(4)2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230786

RESUMEN

Osteoarthritis (OA) is the most frequent joint disease; however, the etiopathogenesis is still unclear. Chondrocytes rely primarily on glycolysis to meet cellular energy demand, but studies implicate impaired mitochondrial function in OA pathogenesis. The relationship between mitochondrial dysfunction and OA has been established. The aim of the study was to examine the differences in glucose and Fatty Acids (FA) metabolism, especially with regards to metabolic flexibility, in cybrids from healthy (N) or OA donors. Glucose and FA metabolism were studied using D-[14C(U)]glucose and [1-14C]oleic acid, respectively. There were no differences in glucose metabolism among the cybrids. Osteoarthritis cybrids had lower acid-soluble metabolites, reflecting incomplete FA ß-oxidation but higher incorporation of oleic acid into triacylglycerol. Co-incubation with glucose and oleic acid showed that N but not OA cybrids increased their glucose metabolism. When treating with the mitochondrial inhibitor etomoxir, N cybrids still maintained higher glucose oxidation. Furthermore, OA cybrids had higher oxidative stress response. Combined, this indicated that N cybrids had higher metabolic flexibility than OA cybrids. Healthy donors maintained the glycolytic phenotype, whereas OA donors showed a preference towards oleic acid metabolism. Interestingly, the results indicated that cybrids from OA patients had mitochondrial impairments and reduced metabolic flexibility compared to N cybrids.


Asunto(s)
Mitocondrias/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Línea Celular , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Haplotipos/genética , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxidos/metabolismo
18.
Int J Biometeorol ; 64(3): 307-318, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31828429

RESUMEN

Osteoarthritis (OA) is a chronic joint disease that results in progressive cartilage destruction and subsequently joint dysfunction. Growing evidence indicates beneficial impact of balneological interventions in OA; however, their mechanisms of action are still unclear. Here, we evaluate the effect of balneotherapy in sulfurous water in an OA experimental model. Experimental OA was induced in Wistar rats by transection of the medial collateral ligament and removal of the medial meniscus of the left knee. Animals were randomized into three groups: non-treated (control) and balneotherapy using sulfurous water (SW) or tap water (TW). Macroscopic evaluation was performed, as well as evaluation of pain levels and analysis of motor function by rotarod test. Histopathological changes in articular cartilage and synovium were also evaluated. The presence of matrix metalloproteinase-13 (MMP-13) and oxidative damage markers was assessed by immunohistochemistry. Joint destabilization induced joint thickening, loss of joint flexion, and increased levels of pain. At day 40, animals from SW group presented lower pain levels than those from control group. Experimental OA also affected motor function. Balneotherapy in sulfur-rich water significantly improved joint mobility in relation to that in tap water. Besides, we observed that cartilage deterioration was lower in SW group than in the other two groups. Likewise, SW group showed reduced levels of MMP-13 in the cartilage. Conversely, we failed to observe any modulation on synovial inflammation. Finally, balneotherapy in sulfurous water diminished the presence of oxidative damage markers. Our results suggest the beneficial effect of balneotherapy in sulfur-rich water on an experimental model of OA, showing a reduced cartilage destruction and oxidative damage. Thus, these findings support the use of balneotherapy as a non-pharmacological treatment in OA.


Asunto(s)
Balneología , Osteoartritis , Animales , Modelos Animales de Enfermedad , Ratones , Ratas , Ratas Wistar , Azufre , Agua
19.
Am J Obstet Gynecol ; 222(4): 376.e1-376.e17, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31738896

RESUMEN

BACKGROUND: Decidualization defects in the endometrium have been demonstrated at the time of delivery in women with severe preeclampsia and to linger for years, which suggests a maternal contribution to the pathogenesis of this condition. Global transcriptional profiling reveals alterations in gene expression, which includes down-regulation of Annexin A2 in severe preeclampsia patients with decidualization resistance. OBJECTIVE: We investigated the functional role of Annexin A2 deficiency during endometrial decidualization and its potential contribution to shallow trophoblast invasion during implantation and subsequent placentation using in vitro and in vivo modeling. STUDY DESIGN: Annexin A2 gene and protein levels were assessed during in vitro decidualization of human endometrial stromal cells isolated from biopsy specimens that were collected from women with previous severe preeclampsia (n=5) or normal obstetric outcomes (n=5). Next, Annexin A2 was inhibited with small interference RNA in control human endometrial stromal cells that were isolated from endometrial biopsy specimens (n=15) as an in vitro model to analyze decidualization defects at the morphologic level and the secretion of prolactin and insulin-like growth binding protein-1. Annexin A2-inhibited cells were used to evaluate motility and promotion of embryo invasion. Decidualization and placentation defects of Annexin A2 deficiency were confirmed with the use of an Annexin A2-null mouse model. RESULTS: Annexin A2 gene and protein levels were down-regulated during in vitro decidualization of human endometrial stromal cells from women with previous severe preeclampsia compared with control individuals. To assess its role in the endometrial stroma, we inhibited Annexin A2 expression and detected decidualization failure as evidenced by impaired morphologic transformation, which was associated with altered actin polymerization and low prolactin and insulin-like growth binding protein-1 secretions. Functionally, in vitro models demonstrated that Annexin A2 inhibition failed to support embryo invasion. This finding was corroborated by reduced trophoblast spreading through human endometrial stromal cells, lack of motility of these cells, and reduced trophoblast invasion in the presence of conditioned media from Annexin A2-inhibited cells. Extending our discovery to an animal model, we detected that Annexin A2-null mice have a functional deficiency in decidualization and placentation that impairs fetal growth as a feature that is associated with severe preeclampsia. CONCLUSION: Together, in vitro and in vivo results suggest that endometrial defects in Annexin A2 expression impair decidualization of endometrial stromal cells as well as the uterine microenvironment that promotes embryo implantation and placentation. Our findings highlight the maternal contribution to the pathogenesis of severe preeclampsia and suggest that evaluation of Annexin A2 may provide a novel strategy to assess a woman's risk of experiencing this disease and perhaps discover therapeutic interventions to improve decidualization.


Asunto(s)
Anexina A2/genética , Anexina A2/metabolismo , Decidua/fisiopatología , Preeclampsia/genética , Actinas/metabolismo , Animales , Anexina A2/antagonistas & inhibidores , Anexina A2/deficiencia , Movimiento Celular , Células Cultivadas , Decidua/patología , Modelos Animales de Enfermedad , Implantación del Embrión , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Ratones , Placentación/genética , Embarazo , Prolactina/metabolismo , ARN Interferente Pequeño/farmacología , Células del Estroma , Trofoblastos/fisiología
20.
Curr Pharm Biotechnol ; 20(11): 920-933, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31237204

RESUMEN

BACKGROUND: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. OBJECTIVES: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. METHODS: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1ß (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1ß (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. RESULTS: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1ß and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. CONCLUSION: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Asunto(s)
Antiinflamatorios/farmacología , Cartílago/efectos de los fármacos , Condrocitos/efectos de los fármacos , Osteoartritis de la Rodilla/terapia , Plasma Rico en Plaquetas , Cartílago/inmunología , Cartílago/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Condrocitos/inmunología , Condrocitos/patología , Humanos , Técnicas In Vitro , Inflamación , Interleucina-1beta/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Osteoartritis de la Rodilla/inmunología , Osteoartritis de la Rodilla/patología , Plasma Rico en Plaquetas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA