Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Esthet Restor Dent ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329344

RESUMEN

OBJECTIVES: To classify the complete-arch implant scanning techniques recorded by using intraoral scanners (IOSs). OVERVIEW: Different implant scanning techniques have been described for recording complete-arch implant scans by using IOSs. However, dental literature lacks on a classification of these implant scanning techniques. Implant scanning techniques aim is to record the 3-dimensional position of the implants being scanned, while implant scanning workflows require additional scans to record all the information needed for designing an implant prosthesis. This additional information includes soft tissue information, tooth position, antagonist arch, and maxillomandibular relationship. CONCLUSIONS: There are five complete-arch implant scanning techniques captured by using IOSs: non-splinting, non-calibrated splinting, calibrated implant scan bodies, calibrated frameworks, and reverse impression methods. The digital workflow varies depending on the implant scanning technique selected. CLINICAL SIGNIFICANCE: The understanding of the varying implant scanning techniques and the main differences among them may ease the decision criteria for recording digital implant scans by using intraoral scanners.

2.
J Dent ; 150: 105310, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153542

RESUMEN

OBJECTIVES: To measure the influence of scanning pattern on the accuracy, time, and number of photograms of complete-arch intraoral implant scans. METHODS: A maxillary edentulous patient with 7 implants was selected. The reference implant cast was obtained using conventional methods (7Series Scanner). Four groups were created based on the scanning pattern used to acquire the complete-arch implant scans by using an intraoral scanner (IOS) (Trios4): manufacturer's recommended (Occlusal-Buccal-Lingual (OBL)), zig-zag (Zig-zag), circumferential (Circumf), and novel pattern that included locking an initial occlusal scan (O-Lock group) (n = 15). Scanning time and number of photograms were recorded. The linear and angular measurements were used to assess scanning accuracy. One-way ANOVA and Tukey tests were used to analyze trueness, scanning time, and number of photograms. The Levene test was selected to assess precision (α=0.05). RESULTS: Statistically significant differences in trueness were detected among OBL, Zig-zag, Circumf, and O-Lock regarding linear discrepancy (P<0.01), angular discrepancy (P<0.01), scanning time (P<0.01), and number of photograms (P<0.01). The O-Lock (63 ± 20 µm) showed the best linear trueness with statistically significant differences (P < 0.01) with Circumferential (86 ± 16 µm) and OBL (87 ± 19 µm) groups. The O-Lock (93.5 ± 13.4 s, 1080 ± 104 photograms) and Circumf groups (102.9 ± 15.1 s, 1112 ± 179 photograms) obtained lower scanning times (P < 0.01) and number of photograms (P < 0.01) than OBL (130.3 ± 19.4 s, 1293 ± 161 photograms) and Zig-zag (125.7 ± 22.1 s, 1316 ± 160 photograms) groups. CONCLUSIONS: The scanning patterns tested influenced scanning accuracy, time, and number of photograms of the complete-arch scans obtained by using the IOS tested. The zig-zag and O-Lock scanning patterns are recommended to obtain complete-arch implant scans when using the selected IOS.

3.
Int J Prosthodont ; 37(7): 285-307, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38819942

RESUMEN

PURPOSE: The purpose of this systematic review and meta-analysis was to compare the influence of fabrication method (conventional, subtractive, and additive procedures) and manufacturing trinomial (technology, printer, and material combination) on the marginal and internal fit of cobaltchromium (Co-Cr) tooth-supported frameworks. MATERIALS AND METHODS: An electronic systematic review was performed in five data bases: MEDLINE/PubMed, Embase, World of Science, Cochrane, and Scopus. Studies that reported the marginal and internal discrepancies of tooth-supported Co-Cr additive manufacturing (AM) frameworks were included. Two authors independently completed the quality assessment of the studies by applying the Joanna Briggs Institute Critical Appraisal Checklist for Quasi-Experimental Studies. A third examiner was consulted to resolve lack of consensus. RESULTS: A total of 31 articles were included and classified based on the evaluation method: manufacturing accuracy, the dual- or triple-scan method, stereomicroscope, optical coordinate measurement machine, microCT, profilometer, and silicone replica. Six subgroups were created: 3D Systems, Bego, Concept Laser, EOS, Kulzer, and Sisma. Due to the heterogeneity and limited data available, only the silicone replica group was considered for meta-analysis. The metaanalysis showed a mean marginal discrepancy of 91.09 µm (I2 = 95%, P < .001) in the conventional group, 77.48 µm (I2 = 99%, P < .001) in the milling group, and 82.92 µm (I2 = 98%, P < .001) in the printing group. Additionally, a mean internal discrepancy of 111.29 µm (I2 = 94%, P < .001) was obtained in the conventional casting group, 121.96 µm (I2 = 100%, P < .001) in the milling group, and 121.25 µm (I2 = 99%, P < .001) in the printing group. CONCLUSIONS: Manufacturing method and selective laser melting (SLM) metal manufacturing trinomial did not impact the marginal and internal discrepancies of Co-Cr frameworks for the fabrication of tooth-supported restorations.


Asunto(s)
Aleaciones de Cromo , Diseño Asistido por Computadora , Humanos , Aleaciones de Cromo/química , Adaptación Marginal Dental , Impresión Tridimensional , Diseño de Dentadura , Diseño de Prótesis Dental , Tecnología Odontológica , Materiales Dentales/química
4.
J Dent ; 147: 105081, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38797486

RESUMEN

OBJECTIVES: To measure the impact of the superimposition methods on accuracy analyses in digital implant research using an ISO-recommended 3-dimensional (3D) metrology-grade inspection software. MATERIALS AND METHODS: A six-implant edentulous maxillary model was scanned using a desktop scanner (7Series; DentalWings; Montreal, Canada) and an intraoral scanner (TRIOS 4; 3Shape; Copenhagen, Denmark) to generate a reference and an experimental mesh, respectively. Thirty experimental standard tesselletion language (STL) files were superimposed onto the reference model's STL using the core features of six superimposition methods, creating the following groups: initial automated pre-alignment (GI), landmark-based alignment (G1), partial area-based alignment (G2), entire area-based alignment (G3), and double alignment combining landmark-based alignment with entire model area-based alignment (G4 ) or the scan bodies' surface (G5). The groups underwent various alignment variations, resulting in sixteen subgroups (n = 30). The alignment accuracy between experimental and reference meshes was quantified by using the root mean square (RMS) error as trueness and its fluctuation as precision. The Kruskal-Wallis test with a subsequent adjusted post-hoc Dunn's pairwise comparison test was used to analyze the data (α = 0.05). The reliability of the measurements was assessed using the intraclass correlation coefficient (ICC). RESULTS: A total of 480 superimpositions were performed. No significant differences were found in trueness and precision among the groups (p > 0.05), except for partial area-based alignment (p < 0.001). Subgroup analysis showed significant differences for partial area-based alignment considering only one scan body (p < 0.001). Initial automated alignment was as accurate as landmark-based, partial, or entire area-based alignments (p > 0.05). Double alignments did not improve alignment accuracy (p > 0.05). The entire area-based alignment of the scan bodies' surface had the least effect on accuracy analyses. CONCLUSIONS: Digital oral implant investigation remains unaffected by the superimposition method when ISO-recommended 3D metrology-grade inspection software is used. At least two scan bodies are needed when considering partial area-based alignments. CLINICAL SIGNIFICANCE: The superimposition method choice within the tested ISO-recommended 3D inspection software did not impact accuracy analyses in digital implant investigation.


Asunto(s)
Diseño Asistido por Computadora , Implantes Dentales , Imagenología Tridimensional , Maxilar , Programas Informáticos , Humanos , Imagenología Tridimensional/métodos , Maxilar/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Dentales , Reproducibilidad de los Resultados , Arcada Edéntula/diagnóstico por imagen , Diseño de Prótesis Dental/métodos , Arco Dental/diagnóstico por imagen , Arco Dental/anatomía & histología
5.
J Esthet Restor Dent ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757761

RESUMEN

OBJECTIVES: To provide an overview of the current artificial intelligence (AI) based applications for assisting digital data acquisition and implant planning procedures. OVERVIEW: A review of the main AI-based applications integrated into digital data acquisitions technologies (facial scanners (FS), intraoral scanners (IOSs), cone beam computed tomography (CBCT) devices, and jaw trackers) and computer-aided static implant planning programs are provided. CONCLUSIONS: The main AI-based application integrated in some FS's programs involves the automatic alignment of facial and intraoral scans for virtual patient integration. The AI-based applications integrated into IOSs programs include scan cleaning, assist scanning, and automatic alignment between the implant scan body with its corresponding CAD object while scanning. The more frequently AI-based applications integrated into the programs of CBCT units involve positioning assistant, noise and artifacts reduction, structures identification and segmentation, airway analysis, and alignment of facial, intraoral, and CBCT scans. Some computer-aided static implant planning programs include patient's digital files, identification, labeling, and segmentation of anatomical structures, mandibular nerve tracing, automatic implant placement, and surgical implant guide design.

6.
J Prosthet Dent ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641480

RESUMEN

STATEMENT OF PROBLEM: Multiple factors can influence the accuracy of intraoral scanners (IOSs). However, the impact of scan extension and starting quadrant on the accuracy of IOSs for fabricating tooth-supported crowns remains uncertain. PURPOSE: The purpose of the present in vitro study was to measure the influence of scan extension (half or complete arch scan) and the starting quadrant (same quadrant or contralateral quadrant of the location of the crown preparation) on the accuracy of four IOSs. MATERIAL AND METHODS: A typodont with a crown preparation on the left first molar was digitized (T710) to obtain a reference scan. Four scanner groups were created: TRIOS 5, PrimeScan, i700, and iTero. Then, 3 subgroups were defined based on the scan extension and starting quadrant: half arch (HA subgroup), complete arch scan starting on the left quadrant (CA-same subgroup), and complete arch scan starting on the right quadrant (CA-contralateral subgroup), (n=15). The reference scan was used as a control to measure the root mean square (RMS) error discrepancies with each experimental scan on the tooth preparation, margin of the tooth preparation, and adjacent tooth areas. Two-way ANOVA and pairwise multiple comparisons were used to analyze trueness (α=.05). The Levene and pairwise comparisons using the Wilcoxon Rank sum tests were used to analyze precision (α=.05). RESULTS: For the tooth preparation analysis, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.002). The iTero and TRIOS5 groups obtained better trueness than the PrimeScan and i700 groups (P<.001). Moreover, half arch scans obtained the best trueness, while the CA-contralateral scans obtained the worst trueness (P<.001). The iTero group showed the worst precision among the IOSs tested. For the margin of the tooth preparation evaluation, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.005). The iTero group obtained best trueness (P<.001), but the worst precision (P<.001) among the IOSs tested. Half arch scans obtained the best trueness and precision values. For the adjacent tooth analysis, trueness and precision differences were found among the groups (P<.001) and subgroups tested (P<.001), with a significant interaction group×subgroup (P=.005). The TRIOS 5 obtained the best trueness and precision. Half arch scans obtained the best accuracy. CONCLUSIONS: Scan extension and the starting quadrant impacted the scanning trueness and precision of the IOSs tested. Additionally, the IOSs showed varying scanning discrepancies depending on the scanning area assessed. Half arch scans presented the highest trueness and precision, and the complete arch scans in which the scan started in the contralateral quadrant of where the crown preparation was obtained the worst trueness and precision.

7.
J Prosthet Dent ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653690

RESUMEN

STATEMENT OF PROBLEM: The influence of different ambient factors including lighting has been previously studied. However, the influence of ambient color lighting settings on intraoral scanning accuracy remains uncertain. PURPOSE: The purpose of this in vitro study was to assess the influence of ambient color lighting on the accuracy of complete arch implant scans recorded by using 2 intraoral scanners (IOSs). MATERIAL AND METHODS: An edentulous maxillary cast with 6 implant scan bodies was digitized by using a laboratory scanner (DW-7-140) to obtain a reference file. Two groups were created based on the IOS tested: TRIOS 4 (IOS-1) and i700 (IOS-2). Seven subgroups were developed depending on the ambient color lighting (red, green, blue, yellow, cyan, magenta, and white) (n=15). Scanning accuracy was analyzed by using a metrology software program (Geomagic Control X). The Kruskal-Wallis, 1-way ANOVA, and pairwise comparisons were used to analyze the data (α=.05). RESULTS: Significant trueness and precision values were found across the groups (P<.05) and subgroups (P<.05). For IOS-1, blue ambient lighting obtained the best trueness (19.8 ±1.8 µm) (P<.05); in precision, white light (20.8 ±7.3 µm) and blue light (22.1 ±13.5) showed the best results (P<.05). For IOS-2, white light showed the best trueness (51.9 ±16.7 µm); the best precision was obtained under magenta (38.6 ±10.4 µm) and yellow light (52.6 ±24.0 µm) (P<.05). CONCLUSIONS: The optimal ambient color lighting varied between the IOSs assessed. As the best condition for maximizing accuracy was not found, ambient color lighting must be individualized for the IOS system used.

8.
J Prosthet Dent ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458860

RESUMEN

STATEMENT OF PROBLEM: An artificial-intelligence (AI) based program can be used to articulate scans in maximum intercuspal position (MIP) or correct occlusal collisions of articulated scans at MIP; however, the accuracy of the AI program determining the MIP relationship is unknown. PURPOSE: The purpose of the present clinical study was to assess the influence of intraoral scanner (IOS) (TRIOS 5 or i700) and program (IOS or AI-based program) on the accuracy of the MIP relationship. MATERIAL AND METHODS: Casts of a participant mounted on an articulator were digitized (T710). A maxillary and a mandibular scan of the participant were recorded by using 2 IOSs: TRIOS 5 and i700. The scans were duplicated 15 times. Then, each duplicated pair of scans was articulated in MIP using a bilateral occlusal record. Articulated scans were duplicated and allocated into 2 groups based on the automatic occlusal collisions' correction completed by using the corresponding IOS program: IOS-corrected and IOS-noncorrected group. Three subgroups were created based on the AI-based program (Bite Finder) method: AI-articulated, AI-IOS-corrected, and AI-IOS-noncorrected (n=15). In the AI-articulated subgroup, the nonarticulated scans were imported and articulated. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-corrected group were imported, and the occlusal collisions were corrected. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-noncorrected subgroup were imported, and the occlusal collisions were corrected. A total of 36 interlandmark measurements were calculated on each articulated scan (Geomagic Wrap). The distances computed on the reference scan were used as a reference to calculate the discrepancies with each experimental scan. Nonparametric 2-way ANOVA and pairwise multiple comparison Dwass-Steel-Critchlow-Fligner tests were used to analyze trueness. The general linear model procedure was used to analyze precision (α=.05). RESULTS: Significant maxillomandibular trueness (P=.003) and precision (P<.001) differences were found among the subgroups. The IOS-corrected and IOS-noncorrected (P<.001) and AI-articulated and IOS-noncorrected subgroups (P=.011) were significantly different from each other. The IOS-corrected and AI-articulated subgroups obtained significantly better maxillomandibular trueness and precision than the IOS-noncorrected subgroups. CONCLUSIONS: The IOSs tested obtained similar MIP accuracy; however, the program used to articulate or correct occlusal collusions impacted the accuracy of the MIP relationship.

9.
J Dent ; 142: 104854, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246309

RESUMEN

PURPOSE: To measure the impact of the scanning distance on the accuracy of complete-arch implant scans acquired by using a photogrammetry (PG) system. MATERIAL AND METHODS: An edentulous cast with 6 implant abutment analogs was obtained. A brand new implant scan body was positioned on each implant abutment and digitized using an extraoral scanner (T710; Medit) and the reference file was obtained. Three groups were created based on the scanning distance used to acquire complete-arch implant scans by using a PG (PIC System; PIC Dental): 20 (20 group), 30 (30 group), and 35 cm (35 group). An optical marker (PIC Transfer, HC MUA Metal; PIC Dental) was placed on each implant abutment and a total of thirty scans per group were acquired. Euclidean linear and angular measurements were obtained on the reference file was obtained and used to compare the discrepancies with the same measurements obtained on each experimental scan. One-way ANOVA and Tukey tests were used to analyze trueness. The Levene test was used to analyze the precision values (α = 0.05). RESULTS: Significant linear (P < .001) and angular trueness (P < .001) discrepancies were found among the groups. For linear trueness, Tukey test showed that the 20 and 30 groups (P < .001) and 30 and 35 groups were different (P < .001). For angular trueness, the Tukey test revealed that 20 and 30 groups (P = .003), 20 and 35 (P < .001), and 30 and 35 groups were different (P < .001) The Levene test showed no significant linear precision (P = .197) and angular discrepancies (P = .229) among the groups. CONCLUSIONS: The scanning distance influenced the trueness of complete-arch implant scans obtained with the PG method tested. The maximum linear trueness mean discrepancy among the groups tested was 10 µm and the maximum angular trueness mean discrepancy among the groups tested was 0.02 .


Asunto(s)
Implantes Dentales , Boca Edéntula , Humanos , Técnica de Impresión Dental , Modelos Dentales , Diseño Asistido por Computadora , Imagenología Tridimensional
10.
J Prosthet Dent ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38267350

RESUMEN

STATEMENT OF PROBLEM: Photogrammetry has been reported to be a reliable digital alternative for recording implant positions; however, the factors that may impact the accuracy of photogrammetry techniques remain unknown. PURPOSE: The purpose of this in vitro study was to assess the influence of the implant reference on the accuracy of complete arch implant scans acquired by using a photogrammetry system. MATERIAL AND METHODS: An edentulous cast with 6 implant abutment analogs (MultiUnit Abutment Plus Replica) was obtained and digitized by using a laboratory scanner (T710; Medit). A photogrammetry system (PIC System) was selected to obtain complete arch implant scans. An optical marker (PIC Transfer, HC MUA Metal; PIC Dental) was positioned on each implant abutment of the reference cast. Each optical marker code and position was determined in the photogrammetry software program. Three groups were created based on the implant reference selected before acquiring the photogrammetry scans: right first molar (IPR-3 group), left canine (IPR-11 group), and left first molar (IPR-14 group) (n=30). Euclidean linear and angular measurements were obtained on the digitized reference cast and used to compare the discrepancies with the same measurements obtained on each experimental scan. One-way ANOVA and the Tukey tests were used to analyze the trueness data. The Levene test was used to analyze the precision values (α=.05 for all tests). RESULTS: One-way ANOVA revealed significant linear (P=.003) and angular (P=.009) trueness differences among the groups tested. Additionally, the Tukey test showed that the IPR-11 and IPR-14 groups had significantly different linear (P<.001) and angular trueness (P<.001). The Levene test showed no significant precision linear (P=.197) and angular (P=.235) discrepancies among the groups tested. The IPR-3 group obtained the highest trueness (P<.001) and precision (P<.001) values among the groups tested. CONCLUSIONS: Implant reference impacted the accuracy of complete arch implant scans obtained by using the photogrammetry system tested. However, a trueness ±precision linear discrepancy of 6 ±3 µm and an angular discrepancy of 0.01 ±0.01 degrees were measured among the groups tested; therefore, the impact of the discrepancy measured should not be clinically significant.

11.
J Esthet Restor Dent ; 36(1): 85-93, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37789708

RESUMEN

OBJECTIVES: To describe a new classification for intraoral scans based on the scan extension and to introduce a decision guideline to choose the scan extension for fabricating tooth- and implant-supported fixed dental prostheses (FDPs). OVERVIEW: Multiple operator- and patient-related factors have been identified that can decrease the scanning accuracy of intraoral scanners (IOSs), including scan extension. However, the decision criteria for selecting scan extension for fabricating tooth- and implant-supported restorations is unclear. Based on the extension of the intraoral digital scans, three types of scans can be defined: half-arch (anterior or posterior), extended half-arch, and complete-arch scan. Variables to consider when choosing the scan extension include the number and location of units being restored, as well as the extension and location of edentulous areas. Additionally, the accuracy of the virtual definitive cast and the accuracy of the maxillomandibular relationship captured by using IOSs should be differentiated. CONCLUSIONS: A decision tree for selecting the scan extension is presented. The decision is based on the number and location of units being restored, and the extension and location of edentulous areas. Intraoral scans with reduced scan extension are indicated when fabricating tooth- and implant-supported crowns or short-span fixed prostheses, when the patient does not have more than one missing tooth in the area of the dental arch included in the scan. For the remaining clinical conditions, complete-arch intraoral scans are recommended. CLINICAL SIGNIFICANCE: Scan extension is a clinician's decision that should be based on the number and location of units being restored and the extension and location of edentulous areas. Intraoral scans with a reduced scan extension is recommended, when possible.


Asunto(s)
Implantes Dentales , Boca Edéntula , Humanos , Modelos Dentales , Técnica de Impresión Dental , Imagenología Tridimensional , Diseño Asistido por Computadora
12.
J Esthet Restor Dent ; 36(2): 270-277, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37615345

RESUMEN

OBJECTIVE: Immediate implants and immediate alveolar sealing have been a widely utilized treatment with high predictability and biological advantages. The improvement in technology has made it possible to simplify clinical processes. The aim of the present report was to describe the complete digital workflow of the Biologically oriented preparation technique for immediate posterior implant, immediate provisionalization and fabrication of definitive implant crowns. CLINICAL CONSIDERATIONS: The surgical process and prosthetic management to preserve the gingival contours of the extracted natural tooth during immediate implant placement and provisionalization are described. Additionally, during the same clinical intervention, the definitive intraoral digital implant scans for capturing the implant position, peri-implant tissue contours, adjacent and antagonist dentition, and profile emergence of the interim implant crown are captured for the fabrication of the definitive crown. CONCLUSIONS: Based on the technique described, the immediate implant placement and provisionalization in the posterior area provides biological and clinical advantages, reducing the number of abutment-implant disconnections and the number of clinical appointments, as well as increases patient comfort. CLINICAL SIGNIFICANCE: The present article describes a technique for an immediate implant placement and provisionalization in the posterior region for maintaining the gingival architecture of the extracted tooth. During the same appointment, the implant position, peri-implant tissue contours, and adjacent and antagonist dentition, and profile emergence of the interim implant crown are captured by using an intraoral scanner and used for the fabrication of the definitive crown. This technique aims to reduce the number of abutment-implant disconnections and clinical appointments.


Asunto(s)
Implantes Dentales de Diente Único , Humanos , Flujo de Trabajo , Coronas , Corona del Diente , Implantación Dental Endoósea/métodos
13.
J Prosthodont ; 33(2): 141-148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634341

RESUMEN

PURPOSE: To assess the influence of print orientation on the surface roughness of implant-supported interim crowns manufactured by using digital light processing (DLP) 3D printing procedures. MATERIALS AND METHODS: An implant-supported maxillary right premolar full-contour crown was obtained. The interim restoration design was used to fabricate 30 specimens with 3 print orientations (0, 45, and 90 degrees) using an interim resin material (GC Temp PRINT) and a DLP printer (Asiga MAX UV) (n = 10). The specimens were manufactured, and each was cemented to an implant abutment with autopolymerizing composite resin cement (Multilink Hybrid Abutment). Surface roughness was assessed on the buccal surface of the premolar specimen by using an optical measurement system (InfiniteFocusG5 plus). The data were analyzed with a Shapiro-Wilk test, resulting in a normal distribution. One-way ANOVA and the Tukey HSD tests were selected (α = 0.05). RESULTS: Statistically significant discrepancies were found in the surface roughness mean values among the groups tested (p < 0.001). The lowest mean ± standard deviation surface roughness was found with the 90-degree group (1.2 ± 0.36 µm), followed by the 0-degree orientation (2.23 ± 0.18 µm) and the 45-degree group (3.18 ± 0.31 µm). CONCLUSIONS: Print orientation parameter significantly impacted the surface roughness of the implant-supported interim crowns manufactured by using the additive procedures tested.


Asunto(s)
Implantes Dentales , Diseño Asistido por Computadora , Cementos Dentales , Coronas , Cementos de Ionómero Vítreo , Ensayo de Materiales
14.
Materials (Basel) ; 16(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068061

RESUMEN

STATEMENT OF PROBLEM: The extraction of fractured abutment screws can be a difficult challenge to overcome. PURPOSE: To compare the removal capacity, dental implant connection damage, and time required to remove the fractured abutment screws between three drilling techniques and a conventional method. MATERIALS AND METHODS: A total of 180 prefabricated screw-retained abutments were intentionally fractured in internal connection dental implants after being subjected to a cyclic load and a static compression load. Afterwards, three operators randomly removed the fractured abutment screws with the following drilling techniques and a conventional method: A: a conventional technique using an exploration probe and ultrasonic appliance (n = 45), Rhein83® (n = 45); B: Sanhigia® (n = 45); C: Phibo® (n = 45). Two-way ANOVA models were estimated to evaluate the mean time according to the method and operator used. RESULTS: The probability of removal of the screws with mobility was twelve times higher than that of the screws without mobility (OR = 12.4; p < 0.001). The success rate according to the operators did not show statistically significant differences (p = 0.371). The location of the fractured screw did not affect removal success (p = 0.530). The internal thread of the implant was affected after the removal process in 9.8% of the cases. The mean extraction time was 3.17 ± 2.52 min. The Rhein83® method showed a success rate of 84.4%, followed by the Phibo® and conventional methods (71.1%) and the Sanhigia® method (46.7%). CONCLUSIONS: The Rhein83® drilling technique increases the removal probability of fractured abutment screws. The initial mobility of the fragment is also a significant factor in the removal success.

15.
Biomedicines ; 11(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38002036

RESUMEN

The roughness of the intra-oral surfaces significantly influences the initial adhesion and the retention of microorganisms. The aim of this study was to analyze the surface texture of four different CAD-CAM materials (two high-performance polymers and two fifth-generation zirconia) used for complete-arch implant-supported prostheses (CAISPs), and to investigate the effect of artificial aging on their roughness. A total of 40 milled prostheses were divided into 4 groups (n = 10) according to their framework material, bio.HPP (B), bio.HPP Plus (BP), zirconia Luxor Z Frame (ZF), and Luxor Z True Nature (ZM). The areal surface roughness "Sa" and the maximum height "Sz" of each specimen was measured on the same site after laboratory fabrication (lab as-received specimen) and after thermocycling (5-55 °C, 10,000 cycles) by using a noncontact optical profilometer. Data were analyzed using SPSS version 28.0.1. One-way ANOVA with multiple comparison tests (p = 0.05) and repeated measures ANOVA were used. After thermocycling, all materials maintained "Sa" values at the laboratory as-received specimen level (p = 0.24). "Sz" increased only for the zirconia groups (p = 0.01). B-BP exhibited results equal/slightly better than ZM-ZF. This study provides more realistic surface texture values of new metal-free materials used in real anatomical CAISPs after the manufacturing and aging processes and establishes a detailed and reproducible measurement workflow.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38014704

RESUMEN

OBJECTIVE: The purpose of the present study was to assess the influence of color temperature and illuminance of ambient light on the accuracy of different intraoral scanners (IOSs) in complete-arch implant scans. METHODS: An edentulous model with six implants and scan bodies was digitized by using a laboratory scanner (DW-7-140; Dental Wings) to obtain a reference mesh. Fifteen scans were performed employing two intraoral scanners (Trios 4;3Shape A/S and i700; Medit Co) at two illuminances (500 and 1000 lux) and three color temperatures (3200, 4400, and 5600 K). Scanning accuracy was measured by using a 3D metrology software program (Geomagic Control X). Kruskal-Wallis, one-way ANOVA, and pairwise comparison tests were used to analyze the data (α = .05). RESULTS: Significant differences in trueness and precision values were found among the different IOSs under the same ambient lighting condition and among the different lighting conditions for a given IOS (p < .05) except for trueness in i700 groups (p > .05). CONCLUSIONS: The influence on the accuracy of color temperature and illuminance varied depending on the intraoral scanner. An optimal ambient scanning light condition was not found; this should be adjusted based on the specific IOS system used. 3200 K of ambient light influences the precision of i700 when performed at 1000 lux, decreasing the accuracy. The variation of color temperature at the same illuminance does not affect the scanning accuracy of TRIOS 4, which obtained better accuracy in all scans at 1000 lux.

17.
Materials (Basel) ; 16(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37895692

RESUMEN

No gingival shade guide exists that can be used as a 'gold standard' in gingival shade selection. This research, therefore, aimed to determine whether comparable results in subjective gingival shade selection can be achieved using basic gingival colours produced by distinct manufacturers. It also aimed to explore how coverage of the colour space is affected by mixing these basic colours to create additional shades. To achieve these objectives, the basic gingival colours of three ceramic systems (Heraceram, Kulzer, Madrid, Spain; Vita VM9, Vita Zahnfabrik, Bad Säckingen, Germany; IPS Style, Ivoclar, Schaan, Liechtenstein) were analysed. The colour systems were expanded by creating porcelain gingival samples, whose colours were obtained by mixing the basic colours, altering each mixture by increments of 10%, and respecting the numerical order used by manufacturers to identify the colours. The colour coordinates of the basic and additional colours were recorded using spectrophotometry, and the intra- and inter-system colour differences were calculated using the Euclidean (ΔEab) and CIEDE2000 (ΔE00) formulae. None of the basic colours in the three systems, despite their similar nomenclature, were found to be interchangeable (the colour differences exceeded the gingival acceptability threshold: ΔE00 2.9 units). The expanded gingival colour systems, with mixtures altered by 10% increments, notably increased the gingival colour space covered by the original systems. The authors concluded that there are clear differences between the basic gingival colours produced by distinct manufacturers using the same nomenclature. Ceramic samples produced by mixing basic gingival colours are a resource with the potential to improve subjective gingival shade matching.

18.
Materials (Basel) ; 16(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37834669

RESUMEN

This in vitro study aimed to assess the presence of microgaps at the implant-abutment interface in monolithic zirconia partial implant-supported fixed prostheses on transepithelial abutments versus Ti-base abutments. METHODS: Sixty conical connection dental implants were divided into two groups (n = 30). The control group consisted of three-unit bridge monolithic zirconia connected to two implants by a transepithelial abutment. The test group consisted of monolithic zirconia three-unit restoration connected to two implants directly by a titanium base (Ti-base) abutment. The sample was subjected to thermocycling (10,000 cycles at 5 °C to 55 °C, dwelling time 50 s) and chewing simulation (300,000 cycles, under 200 N at frequencies of 2 Hz, at a 30° angle). The microgap was evaluated at six points (mesiobuccal, buccal, distobuccal, mesiolingual, lingual, and distolingual) of each implant-abutment interface by using a scanning electron microscope (SEM). The data were analyzed using the Mann-Whitney U tests (p > 0.05). RESULTS: The SEM analysis showed a smaller microgap at the implant-abutment interface in the control group (0.270 µm) than in the test group (3.902 µm). Statistically significant differences were observed between both groups (p < 0.05). CONCLUSIONS: The use or not of transepithelial abutments affects the microgap size. The transepithelial abutments group presented lower microgap values at the interface with the implant than the Ti-base group in monolithic zirconia partial implant-supported fixed prostheses. However, both groups had microgap values within the clinically acceptable range.

19.
J Prosthet Dent ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37793952

RESUMEN

STATEMENT OF PROBLEM: Research into the coverage error (CE) of gingival systems that have been expanded by using ceramic specimens created by mixing basic colors is lacking. PURPOSE: The purpose of this in vitro study was to compare the CEs of 3 ceramic gingival color systems that have been expanded with basic-color mixtures from a sample of 360 White participants and to classify the participants according to the accuracy of the shade match achieved with each system. MATERIAL AND METHODS: L*a*b* color coordinates were recorded in 3 zones of attached gingiva for 360 White participants with healthy gingival tissue (187 men and 173 women). The CEs were calculated for 3 ceramic gingival systems that had been expanded with specimens obtained by mixing the basic colors in consecutive order, the color percentages in each mixture having been altered by 10% increments. The systems were Heraceram (Kulzer GmbH) (n=51); Vita VM9 (Vita-Zahnfabrik) (n=41); and IPS Style (Ivoclar AG) (n=41). The participants were classified into 3 groups according to how well the selected shade matched their gingival color (excellent, acceptable, or poor). The data were analyzed using a 1-way ANOVA with a randomized block design and the homogeneity of proportions test (α=.05). RESULTS: Statistically significant differences were found between the CEs of the 3 expanded gingival systems in the 3 zones where gingival color was measured (P<.001). The expanded Heraceram system had the smallest CE (ΔE00: minimum 2.66 in the middle zone and maximum 2.95 at the mucogingival line). In the 3 gingival zones, the expanded IPS Style system produced the largest percentage of participants with a poor shade match (ΔE00: minimum 71.4% at the mucogingival line and maximum 75.8% at the free gingival margin), while the expanded Heraceram system had the lowest percentage of participants with a poor shade match (ΔE00: minimum 33.3% in the middle zone and maximum 41.7% at the mucogingival line). CONCLUSIONS: The CEs calculated for the expanded Vita VM9 and IPS Style ceramic gingival color systems exceeded the clinical acceptability thresholds in the 3 zones examined. According to the ΔE00 formula, the gingival color of at least 33% of participants matched poorly with the expanded systems studied.

20.
J Prosthet Dent ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37798183

RESUMEN

STATEMENT OF PROBLEM: Artificial intelligence (AI) models have been developed for different applications, including the automatic design of occlusal devices; however, the design discrepancies of an experienced dental laboratory technician and these AI automatic programs remain unknown. PURPOSE: The purpose of this in vitro study was to compare the overall, intaglio, and occlusal surface discrepancies of the occlusal device designs completed by an experienced dental laboratory technician and two AI automatic design programs. MATERIAL AND METHODS: Virtually articulated maxillary and mandibular diagnostic casts were obtained in a standard tessellation language (STL) file format. Three groups were created depending on the operator or program used to design the occlusal devices: an experienced dental laboratory technician (control group) and two AI programs, namely Medit Splints from Medit (Medit group) and Automate from 3Shape A/S (3Shape group) (n=10). To minimize the discrepancies in the parameter designs among the groups tested, the same printing material and design parameters were selected. In the control group, the dental laboratory technician imported the articulated scans into a dental design program (DentalCAD) and designed a maxillary occlusal device. The occlusal device designs were exported in STL format. In the Medit and 3Shape groups, the diagnostic casts were imported into the respective AI programs. The AI programs automatically designed the occlusal device without any further operator intervention. The occlusal device designs were exported in STL format. Among the 10 occlusal designs of the control group, a random design (shuffle deck of cards) was used as a reference file to calculate the overall, intaglio, and occlusal discrepancies in the specimens of the AI groups by using a program (Medit Design). The root mean square (RMS) error was calculated. Kruskal-Wallis, and post hoc Dwass-Steel-Critchlow-Fligner pairwise comparison tests were used to analyze the trueness of the data. The Levene test was used to assess the precision data (α=.05). RESULTS: Significant overall (P<.001), intaglio (P<.001), and occlusal RMS median value (P<.001) discrepancies were found among the groups. Significant overall RMS median discrepancies were observed between the control and the Medit groups (P<.001) and the control and 3Shape groups (P<.001). Additionally, significant intaglio RMS median discrepancies were found between the control and the Medit groups (P<.001), the Medit and 3Shape groups (P<.001), and the control and 3Shape groups (P=.008). Lastly, significant occlusal RMS median discrepancies were found between the control and the 3Shape groups (P<.001) and the Medit and 3Shape groups (P<.001). The AI-based software programs tested were able to automatically design occlusal devices with less than a 100-µm trueness discrepancy compared with the dental laboratory technician. The Levene test revealed significant overall (P<.001), intaglio (P<.001), and occlusal (P<.001) precision among the groups tested. CONCLUSIONS: The use of a dental laboratory technique influenced the overall, intaglio, and occlusal trueness of the occlusal device designs obtained. No differences were observed in the precision of occlusal device designs acquired among the groups tested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA