Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
4.
Sci Rep ; 14(1): 13999, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890528

RESUMEN

Penicillin binding proteins (PBPs) are involved in biosynthesis, remodeling and recycling of peptidoglycan (PG) in bacteria. PBP-A from Thermosynechococcus elongatus belongs to a cyanobacterial family of enzymes sharing close structural and phylogenetic proximity to class A ß-lactamases. With the long-term aim of converting PBP-A into a ß-lactamase by directed evolution, we simulated what may happen when an organism like Escherichia coli acquires such a new PBP and observed growth defect associated with the enzyme activity. To further explore the molecular origins of this harmful effect, we decided to characterize deeper the activity of PBP-A both in vitro and in vivo. We found that PBP-A is an enzyme endowed with DD-carboxypeptidase and DD-endopeptidase activities, featuring high specificity towards muropeptides amidated on the D-iso-glutamyl residue. We also show that a low promiscuous activity on non-amidated peptidoglycan deteriorates E. coli's envelope, which is much higher under acidic conditions where substrate discrimination is mitigated. Besides expanding our knowledge of the biochemical activity of PBP-A, this work also highlights that promiscuity may depend on environmental conditions and how it may hinder rather than promote enzyme evolution in nature or in the laboratory.


Asunto(s)
Escherichia coli , Proteínas de Unión a las Penicilinas , Peptidoglicano , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/metabolismo , Especificidad por Sustrato , Cianobacterias/metabolismo , Cianobacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Synechococcus
5.
Sci Rep ; 14(1): 3769, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355917

RESUMEN

The current study provides field experimental data that support the use of γ-polyglutamic acid (γ-PGA) in drought stress and proposes its application in grassland management. We hypothesized that water treatment combined with PGA application to sandy soil would reduce drought stress in grasslands more effectively than watering alone. A randomized block design was used, with three replicate watering blocks (no watering, weekly watering, and monthly watering) and PGA treatments at four different concentrations (0%, 0.3%, 1%, and 2% PGA). The results showed that PGA acts as a biostimulant, alleviating the effects of stress in plants by: (1) increasing the availability of ions, especially K+, Zn2+, Mn2+, Fe2+/3+, Ca2+, and Mg2+, as well as N-NH4+, and N-NO3-, (2) elongating plant roots, (3) increasing the aboveground biomass, (4) improving the resprouting capacity of the dominant grass Nardus stricta, and (5) improving the regeneration of dicotyledons. In the case of meadows on sandy soils, the use of low PGA concentrations (0.3% or 1%) was the most beneficial for the availability of macro- and microelements and improving the functional traits of plants. Irrigation had a greater effect than using PGA only for the dicotyledon to monocotyledon ratio.


Asunto(s)
Magnoliopsida , Ácido Poliglutámico/análogos & derivados , Suelo , Pradera , Arena , Sequías , Plantas , Poaceae
6.
J Chem Inf Model ; 63(12): 3669-3687, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37285179

RESUMEN

Toll-like receptors (TLRs) are transmembrane proteins that recognize various molecular patterns and activate signaling that triggers the immune response. In this review, our goal is to summarize how, in recent years, various computational solutions have contributed to a better understanding of TLRs, regarding both their function and mechanism of action. We update the recent information about small-molecule modulators and expanded the topic toward next-generation vaccine design, as well as studies of the dynamic nature of TLRs. Also, we underline problems that remain unsolved.


Asunto(s)
Transducción de Señal , Receptores Toll-Like , Receptores Toll-Like/metabolismo
7.
PLoS One ; 18(2): e0280776, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36827335

RESUMEN

The haloalkane dehalogenase LinB is a well-known enzyme that contains buried active site and is used for many modelling studies. Using classical molecular dynamics simulations of enzymes and substrates, we searched for transient binding sites on the surface of the LinB protein by calculating maps of enzyme-ligand interactions that were then transformed into sparse matrices. All residues considered as functionally important for enzyme performance (e.g., tunnel entrances) were excluded from the analysis to concentrate rather on non-obvious surface residues. From a set of 130 surface residues, twenty-six were proposed as a promising improvement of enzyme performance. Eventually, based on rational selection and filtering out the potentially unstable mutants, a small library of ten mutants was proposed to validate the possibility of fine-tuning the LinB protein. Nearly half of the predicted mutant structures showed improved activity towards the selected substrates, which demonstrates that the proposed approach could be applied to identify non-obvious yet beneficial mutations for enzyme performance especially when obvious locations have already been explored.


Asunto(s)
Hidrolasas , Simulación de Dinámica Molecular , Sitios de Unión , Hidrolasas/metabolismo , Dominio Catalítico
8.
J Chem Inf Model ; 62(24): 6803-6811, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36374085

RESUMEN

Different methods for tunnel identification, geometry-based and small-molecule tracking approaches, were compared to provide their benefits and pitfalls. Results obtained for both crystal structures and molecular dynamics (MD) simulations were analyzed to investigate if a more computationally demanding method would be beneficial. Careful examination of the results is essential for the low-diameter tunnel description, and assessment of the tunnel functionality based only on their geometrical parameters is challenging. We showed that the small-molecule tracking approach can provide a detailed description of the system; however, it can also be the most computationally demanding.


Asunto(s)
Simulación de Dinámica Molecular
9.
PLoS Comput Biol ; 18(5): e1010119, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580137

RESUMEN

The evolutionary variability of a protein's residues is highly dependent on protein region and function. Solvent-exposed residues, excluding those at interaction interfaces, are more variable than buried residues whereas active site residues are considered to be conserved. The abovementioned rules apply also to α/ß-hydrolase fold proteins-one of the oldest and the biggest superfamily of enzymes with buried active sites equipped with tunnels linking the reaction site with the exterior. We selected soluble epoxide hydrolases as representative of this family to conduct the first systematic study on the evolution of tunnels. We hypothesised that tunnels are lined by mostly conserved residues, and are equipped with a number of specific variable residues that are able to respond to evolutionary pressure. The hypothesis was confirmed, and we suggested a general and detailed way of the tunnels' evolution analysis based on entropy values calculated for tunnels' residues. We also found three different cases of entropy distribution among tunnel-lining residues. These observations can be applied for protein reengineering mimicking the natural evolution process. We propose a 'perforation' mechanism for new tunnels design via the merging of internal cavities or protein surface perforation. Based on the literature data, such a strategy of new tunnel design could significantly improve the enzyme's performance and can be applied widely for enzymes with buried active sites.


Asunto(s)
Epóxido Hidrolasas , Hidrolasas , Sitios de Unión , Dominio Catalítico , Epóxido Hidrolasas/química , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo , Proteínas
11.
Biomolecules ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35327592

RESUMEN

Congenital Disorders of Glycosylation (CDG) are multisystemic metabolic disorders showing highly heterogeneous clinical presentation, molecular etiology, and laboratory results. Here, we present different transferrin isoform patterns (obtained by isoelectric focusing) from three female patients harboring the ALG13 c.320A>G mutation. Contrary to other known variants of type I CDGs, where transferrin isoelectric focusing revealed notably increased asialo- and disialotransferrin fractions, a normal glycosylation pattern was observed in the probands. To verify this data and give novel insight into this variant, we modeled the human Alg13 protein and analyzed the dynamics of the apo structure and the complex with the UDP-GlcNAc substrate. We also modeled the Alg13-Alg14 heterodimer and ran multiple simulations of the complex in the presence of the substrate. Finally, we proposed a plausible complex formation mechanism.


Asunto(s)
Trastornos Congénitos de Glicosilación , Variación Biológica Poblacional , Trastornos Congénitos de Glicosilación/genética , Femenino , Glicosilación , Humanos , Mutación , N-Acetilglucosaminiltransferasas
12.
Comput Struct Biotechnol J ; 20: 193-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35024092

RESUMEN

Enzymes with buried active sites maintain their catalytic function via a single tunnel or tunnel network. In this study we analyzed the functionality of soluble epoxide hydrolases (sEHs) tunnel network, by comparing the overall enzyme structure with the tunnel's shape and size. sEHs were divided into three groups based on their structure and the tunnel usage. The obtained results were compared with known substrate preferences of the studied enzymes, as well as reported in our other work evolutionary analyses data. The tunnel network architecture corresponded well with the evolutionary lineage of the source organism and large differences between enzymes were observed from long fragments insertions. This strategy can be used during protein re-engineering process for large changes introduction, whereas tunnel modification can be applied for fine-tuning of enzyme.

13.
PLoS One ; 17(1): e0262482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35015795

RESUMEN

Based on previous large-scale in silico screening several factor Xa inhibitors were proposed to potentially inhibit SARS-CoV-2 Mpro. In addition to their known anticoagulants activity this potential inhibition could have an additional therapeutic effect on patients with COVID-19 disease. In this study we examined the binding of the Apixaban, Betrixaban and Rivaroxaban to the SARS-CoV-2 Mpro with the use of the MicroScale Thermophoresis technique. Our results indicate that the experimentally measured binding affinity is weak and the therapeutic effect due to the SARS-CoV-2 Mpro inhibition is rather negligible.


Asunto(s)
Proteínas M de Coronavirus/antagonistas & inhibidores , Inhibidores del Factor Xa/química , SARS-CoV-2/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Sitios de Unión , COVID-19/virología , Proteínas M de Coronavirus/metabolismo , Inhibidores del Factor Xa/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Estabilidad Proteica , Pirazoles/química , Pirazoles/metabolismo , Piridinas/química , Piridinas/metabolismo , Piridonas/química , Piridonas/metabolismo , Rivaroxabán/química , Rivaroxabán/metabolismo , SARS-CoV-2/aislamiento & purificación , Tratamiento Farmacológico de COVID-19
14.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34832935

RESUMEN

In the present study we tested, using the microscale thermophoresis technique, a small library of thionocarbamates, thiolocarbamates, sulfide and disulfide as potential lead compounds for SARS-CoV-2 Mpro drug design. The successfully identified binder is a representative of the thionocarbamates group with a high potential for future modifications aiming for higher affinity and solubility. The experimental analysis was extended by computational studies that show insufficient accuracy of the simplest and widely applied approaches and underline the necessity of applying more advanced methods to properly evaluate the affinity of potential SARS-CoV-2 Mpro binders.

15.
Drug Discov Today ; 26(8): 1914-1921, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34082135

RESUMEN

Human soluble epoxide hydrolase (hsEH) is involved in the hydrolysis of epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory properties. Given that EET conversion generates nonbioactive molecules, inhibition of this enzyme would be beneficial. Past decades of work on hsEH inhibitors resulted in numerous potential compounds, of which a hundred hsEH-ligand complexes were crystallized and deposited in the Protein Data Bank (PDB). We analyzed all deposited hsEH-ligand complexes to gain insight into the binding of inhibitors and to provide feedback on the future drug design processes. We also reviewed computationally driven strategies that were used to propose novel hsEH inhibitors.


Asunto(s)
Antiinflamatorios/farmacología , Diseño de Fármacos , Epóxido Hidrolasas/antagonistas & inhibidores , Eicosanoides/metabolismo , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/metabolismo , Humanos , Ligandos
16.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669738

RESUMEN

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious global health threat. Since no specific therapeutics are available, researchers around the world screened compounds to inhibit various molecular targets of SARS-CoV-2 including its main protease (Mpro) essential for viral replication. Due to the high urgency of these discovery efforts, off-target binding, which is one of the major reasons for drug-induced toxicity and safety-related drug attrition, was neglected. Here, we used molecular docking, toxicity profiling, and multiple molecular dynamics (MD) protocols to assess the selectivity of 33 reported non-covalent inhibitors of SARS-CoV-2 Mpro against eight proteases and 16 anti-targets. The panel of proteases included SARS-CoV Mpro, cathepsin G, caspase-3, ubiquitin carboxy-terminal hydrolase L1 (UCHL1), thrombin, factor Xa, chymase, and prostasin. Several of the assessed compounds presented considerable off-target binding towards the panel of proteases, as well as the selected anti-targets. Our results further suggest a high risk of off-target binding to chymase and cathepsin G. Thus, in future discovery projects, experimental selectivity assessment should be directed toward these proteases. A systematic selectivity assessment of SARS-CoV-2 Mpro inhibitors, as we report it, was not previously conducted.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , COVID-19/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular/métodos , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , SARS-CoV-2/enzimología
17.
Diagnostics (Basel) ; 10(10)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066491

RESUMEN

(1) Background: Molybdenum cofactor deficiency type B (MOCODB, #252160) is a rare autosomal recessive metabolic disorder characterized by intractable seizures of neonatal-onset, muscular spasticity, accompanying with hypouricemia, elevated urinary sulfite levels and craniofacial dysmorphism. Thirty-five patients were reported to date. (2) Methods: Our paper aimed to delineate the disease genotype by presenting another patient, in whom a novel, in-frame variant within the MOCS2 gene was identified. (3) Results: Exome sequencing led to the identification of a novel variant in the MOCS2 gene-c.472_477del of unknown significance (VUS). (4) Conclusions: To prove the clinical significance of the mentioned variant, analysis of the possible mutation consequences on molecular level with the use of the available crystal structure of the human molybdopterin synthase complex was of great importance. Moreover, a potential pathomechanism resulting from a molecular defect was presented, giving original insight into the current knowledge on this rare disease, including treatment options.

18.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32353978

RESUMEN

The novel coronavirus whose outbreak took place in December 2019 continues to spread at a rapid rate worldwide. In the absence of an effective vaccine, inhibitor repurposing or de novo drug design may offer a longer-term strategy to combat this and future infections due to similar viruses. Here, we report on detailed classical and mixed-solvent molecular dynamics simulations of the main protease (Mpro) enriched by evolutionary and stability analysis of the protein. The results were compared with those for a highly similar severe acute respiratory syndrome (SARS) Mpro protein. In spite of a high level of sequence similarity, the active sites in both proteins showed major differences in both shape and size, indicating that repurposing SARS drugs for COVID-19 may be futile. Furthermore, analysis of the binding site's conformational changes during the simulation time indicated its flexibility and plasticity, which dashes hopes for rapid and reliable drug design. Conversely, structural stability of the protein with respect to flexible loop mutations indicated that the virus' mutability will pose a further challenge to the rational design of small-molecule inhibitors. However, few residues contribute significantly to the protein stability and thus can be considered as key anchoring residues for Mpro inhibitor design.


Asunto(s)
Betacoronavirus/enzimología , Cisteína Endopeptidasas/química , Diseño de Fármacos , Inhibidores de Proteasas/farmacología , Bibliotecas de Moléculas Pequeñas , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/genética , Sitios de Unión , COVID-19 , Dominio Catalítico , Proteasas 3C de Coronavirus , Infecciones por Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Evaluación Preclínica de Medicamentos , Evolución Molecular , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Pandemias , Neumonía Viral , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2 , Solventes , Termodinámica , Proteínas no Estructurales Virales/genética
19.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225102

RESUMEN

Loops are the most variable and unorganized elements of the secondary structure of proteins. Their ability to shift their shape can play a role in the binding of small ligands, enzymatic catalysis, or protein-protein interactions. Due to the loop flexibility, the positions of their residues in solved structures show the largest B-factors, or in a worst-case scenario can be unknown. Based on the loops' movements' timeline, they can be divided into slow (static) and fast (flexible). Although most of the loops that are missing in experimental structures belong to the flexible loops group, the computational tools for loop reconstruction use a set of static loop conformations to predict the missing part of the structure and evaluate the model. We believe that these two loop types can adopt different conformations and that using scoring functions appropriate for static loops is not sufficient for flexible loops. We showed that common model evaluation methods, are insufficient in the case of flexible solvent-exposed loops. Instead, we recommend using the potential energy to evaluate such loop models. We provide a novel model selection method based on a set of geometrical parameters to distinguish between flexible and static loops without the use of molecular dynamics simulations. We have also pointed out the importance of water network and interactions with the solvent for the flexible loop modeling.


Asunto(s)
Simulación de Dinámica Molecular , Análisis de Secuencia de Proteína/métodos , Animales , Aspergillus niger/enzimología , Bombyx/enzimología , Epóxido Hidrolasas/química , Proteínas Fúngicas/química , Proteínas de Insectos/química , Conformación Proteica en Hélice alfa , Dominios Proteicos
20.
Comput Struct Biotechnol J ; 18: 355-365, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32123557

RESUMEN

Water molecules maintain proteins' structures, functions, stabilities and dynamics. They can occupy certain positions or pass quickly via a protein's interior. Regardless of their behaviour, water molecules can be used for the analysis of proteins' structural features and biochemical properties. Here, we present a list of several software programs that use the information provided by water molecules to: i) analyse protein structures and provide the optimal positions of water molecules for protein hydration, ii) identify high-occupancy water sites in order to analyse ligand binding modes, and iii) detect and describe tunnels and cavities. The analysis of water molecules' distribution and trajectories sheds a light on proteins' interactions with small molecules, on the dynamics of tunnels and cavities, on protein composition and also on the functionality, transportation network and location of functionally relevant residues. Finally, the correct placement of water molecules in protein crystal structures can significantly improve the reliability of molecular dynamics simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA