Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Cardiovasc Res ; 2: 835-852, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38075556

RESUMEN

During megakaryopoiesis, megakaryocytes (MK) undergo cellular morphological changes with strong modification of membrane composition and lipid signaling. Here we adopt a lipid-centric multiomics approach to create a quantitative map of the MK lipidome during maturation and proplatelet formation. Data reveal that MK differentiation is driven by an increased fatty acyl import and de novo lipid synthesis, resulting in an anionic membrane phenotype. Pharmacological perturbation of fatty acid import and phospholipid synthesis blocked membrane remodeling and directly reduced MK polyploidization and proplatelet formation resulting in thrombocytopenia. The anionic lipid shift during megakaryopoiesis was paralleled by lipid-dependent relocalization of the scaffold protein CKIP-1 and recruitment of the kinase CK2α to the plasma membrane, which seems to be essential for sufficient platelet biogenesis. Overall, this study provides a framework to understand how the MK lipidome is altered during maturation and the impact of MK membrane lipid remodeling on MK kinase signaling involved in thrombopoiesis.

2.
Platelets ; 33(6): 849-858, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35109754

RESUMEN

Interrogating platelets and their densely packed, highly abundant receptor landscape is key to understand platelet clotting, a process that can save lives when stopping blood loss after an injury, but also kill when causing heart attack, stroke, or pulmonary embolism. The underlying key receptor distributions and interactions, in particular the relevance of integrin clustering, are not fully understood is because of highly abundant and densely distributed αIIbß3 receptors. This makes receptor distributions difficult to assess even by super-resolution fluorescence microscopy. Here, we combine dual-color expansion and confocal microscopy with colocalization analysis to assess platelet receptor organization without the need of a super-resolution microscope. We show that 4x expansion is highly straight-forward for super-resolution microscopy of platelets, while 10x expansion provides higher precision at the price of increased efforts in sample preparation and imaging. Quantifying various receptor colocalization scenarios we demonstrate that expansion microscopy can pinpoint receptor distributions and interactions in resting and activated platelets being superior to conventional methods that fail in such dense 3D scenarios with highly abundant receptors. We reveal the presence of αIIbß3 clusters in resting platelets, as well as in activated platelets, indicating that they contribute to the rapid platelet response during platelet clotting.


Asunto(s)
Plaquetas , Microscopía , Animales , Coagulación Sanguínea , Plaquetas/fisiología , Hemostasis , Humanos , Ratones , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria
3.
Haematologica ; 107(12): 2846-2858, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34348450

RESUMEN

Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin ß4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin ß4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin ß4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin ß4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability.


Asunto(s)
Plaquetas , Trombosis , Timosina , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Plaquetas/metabolismo , Ratones Noqueados , Trombosis/genética , Trombosis/metabolismo , Timosina/genética
4.
Sci Rep ; 11(1): 22887, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819574

RESUMEN

Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, successful recanalization of occluded vessels is the primary therapeutic aim, but even if it is achieved, not all patients benefit. Although blockade of platelet aggregation did not prevent infarct progression, cerebral thrombosis as cause of secondary infarct growth has remained a matter of debate. As cerebral thrombi are frequently observed after experimental stroke, a thrombus-induced impairment of the brain microcirculation is considered to contribute to tissue damage. Here, we combine the model of transient middle cerebral artery occlusion (tMCAO) with light sheet fluorescence microscopy and immunohistochemistry of brain slices to investigate the kinetics of thrombus formation and infarct progression. Our data reveal that tissue damage already peaks after 8 h of reperfusion following 60 min MCAO, while cerebral thrombi are only observed at later time points. Thus, cerebral thrombosis is not causative for secondary infarct growth during ischemic stroke.


Asunto(s)
Encéfalo/irrigación sanguínea , Infarto de la Arteria Cerebral Media/complicaciones , Trombosis Intracraneal/etiología , Ataque Isquémico Transitorio/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Daño por Reperfusión/etiología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/patología , Trombosis Intracraneal/patología , Ataque Isquémico Transitorio/patología , Accidente Cerebrovascular Isquémico/patología , Cinética , Masculino , Ratones Endogámicos C57BL , Daño por Reperfusión/patología
5.
J Thromb Haemost ; 19(11): 2835-2840, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34363738

RESUMEN

BACKGROUND: Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development. However, currently, in vivo studies on their efficacy and safety are impeded by the lack of an optimized animal model expressing the specific target, that is, human FXII. OBJECTIVE: The primary objective of this study is to develop and functionally characterize a humanized FXII mouse model. METHODS: A humanized FXII mouse model was generated by replacing the murine with the human F12 gene (genetic knock-in) and tested it in in vitro coagulation assays and in in vivo thrombosis models. RESULTS: These hF12KI mice were indistinguishable from wild-type mice in all tested assays of coagulation and platelet function in vitro and in vivo, except for reduced expression levels of hFXII compared to human plasma. Targeting FXII by the anti-human FXIIa antibody 3F7 increased activated partial thromboplastin time dose-dependently and protected hF12KI mice in an arterial thrombosis model without affecting bleeding times. CONCLUSION: These data establish the newly generated hF12KI mouse as a powerful and unique model system for in vivo studies on anti-FXII(a) biologics, supporting the development of efficient and safe human FXII(a) inhibitors.


Asunto(s)
Factor XII , Trombosis , Animales , Coagulación Sanguínea , Modelos Animales de Enfermedad , Factor XII/genética , Hemostasis , Ratones , Trombosis/tratamiento farmacológico , Trombosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA