Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39424706

RESUMEN

Vat photopolymerisation 3D printing is being actively explored for manufacturing personalised medicines due to its high dimensional accuracy and lack of heat application. However, several challenges have hindered its clinical translation, including the inadequate printing speeds, the lack of resins that give soluble matrices, and the need for non-destructive quality control measures. In this study, for the first time, a rapid approach to producing water-soluble vat photopolymerised matrices and a means of non-destructively verifying their drug content were investigated. Volumetric printing, a novel form of vat photopolymerisation, was used to fabricate personalised warfarin-loaded 3D-printed tablets (printlets). Eight different formulations containing varying amounts of warfarin (0.5-6.0% w/w) were used to print two different sized torus-shaped printlets within 6.5 to 11.1 s. Nuclear magnetic resonance (NMR) spectroscopy revealed the presence of only trace amounts of unreacted acrylate monomers, suggesting that the photopolymerisation reaction had occurred to near completion. All printlets completely solubilised and released their entire drug load within 2.5 to 7 h. NIR spectroscopy (NIRS) was used to non-destructively verify the dose of warfarin loaded into the vat photopolymerised printlets. The partial least square regression model built showed strong linearity (R2 = 0.980), and high accuracy in predicting the drug loading of the test sample (RMSEP = 0.205%). Therefore, this study advances pharmaceutical vat photopolymerisation by demonstrating the feasibility of producing water-soluble printlets via volumetric printing and quantifying the drug load of vat photopolymerised printlets with NIRS.

2.
ACS Sustain Chem Eng ; 12(30): 11155-11166, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39091925

RESUMEN

Selective laser sintering (SLS) is an emerging three-dimensional (3D) printing technology that uses a laser to fuse powder particles together, which allows the fabrication of personalized solid dosage forms. It possesses great potential for commercial use. However, a major drawback of SLS is the need to heat the powder bed while printing; this leads to high energy consumption (and hence a large carbon footprint), which may hinder its translation to industry. In this study, the concept of cold laser sintering (CLS) is introduced. In CLS, the aim is to sinter particles without heating the powder bed, where the energy from the laser, alone, is sufficient to fuse adjacent particles. The study demonstrated that a laser power above 1.8 W was sufficient to sinter both KollicoatIR and Eudragit L100-55-based formulations at room temperature. The cold sintering printing process was found to reduce carbon emissions by 99% compared to a commercial SLS printer. The CLS printed formulations possessed characteristics comparable to those made with conventional SLS printing, including a porous microstructure, fast disintegration time, and molecular dispersion of the drug. It was also possible to achieve higher drug loadings than was possible with conventional SLS printing. Increasing the laser power from 1.8 to 3.0 W increased the flexural strength of the printed formulations from 0.6 to 1.6 MPa, concomitantly increasing the disintegration time from 5 to over 300 s. CLS appears to offer a new route to laser-sintered pharmaceuticals that minimizes impact on the environment and is fit for purpose in Industry 5.0.

3.
Eur J Pharm Sci ; 200: 106845, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971433

RESUMEN

The gut microbiota is a complex ecosystem, home to hundreds of bacterial species and a vast repository of enzymes capable of metabolising a wide range of pharmaceuticals. Several drugs have been shown to affect negatively the composition and function of the gut microbial ecosystem. Janus Kinase (JAK) inhibitors and Sphingosine-1-phosphate (S1P) receptor modulators are drugs recently approved for inflammatory bowel disease through an immediate release formulation and would potentially benefit from colonic targeted delivery to enhance the local drug concentration at the diseased site. However, their impact on the human gut microbiota and susceptibility to bacterial metabolism remain unexplored. With the use of calorimetric, optical density measurements, and metagenomics next-generation sequencing, we show that JAK inhibitors (tofacitinib citrate, baricitinib, filgotinib) have a minor impact on the composition of the human gut microbiota, while ozanimod exerts a significant antimicrobial effect, leading to a prevalence of the Enterococcus genus and a markedly different metabolic landscape when compared to the untreated microbiota. Moreover, ozanimod, unlike the JAK inhibitors, is the only drug subject to enzymatic degradation by the human gut microbiota sourced from six healthy donors. Overall, given the crucial role of the gut microbiome in health, screening assays to investigate the interaction of drugs with the microbiota should be encouraged for the pharmaceutical industry as a standard in the drug discovery and development process.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Inhibidores de las Cinasas Janus , Moduladores de los Receptores de fosfatos y esfingosina 1 , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de las Cinasas Janus/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Pirazoles/farmacología , Colon/microbiología , Colon/metabolismo , Colon/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/administración & dosificación , Purinas , Azetidinas/farmacología , Azetidinas/administración & dosificación , Compuestos de Bencilo/farmacología , Compuestos de Bencilo/administración & dosificación , Piperidinas/farmacología , Piperidinas/administración & dosificación , Pirimidinas/farmacología , Pirimidinas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Oxadiazoles/farmacología , Oxadiazoles/administración & dosificación , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Pirroles/farmacología , Pirroles/administración & dosificación , Indanos/farmacología , Indanos/administración & dosificación , Piridinas , Triazoles
4.
J Control Release ; 369: 163-178, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521168

RESUMEN

The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Colon/metabolismo , Colon/microbiología , Ácido Láctico/metabolismo , Masculino , Adulto , Femenino
5.
Reprod Biomed Online ; 48(4): 103734, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38359733

RESUMEN

Disruption of women's gut and cervicovaginal microbiota has been associated with multiple gynaecological diseases such as endometriosis, polycystic ovary syndrome, non-cyclic pelvic pain and infertility. Female infertility affects 12.6% of women worldwide; its aetiology is complex and multifactorial and can be underpinned by uterine pathologies, systemic diseases and age. In addition, a new perspective has emerged on the role of the gut and vaginal microbiomes in reproductive health. Research shows that the administration of precisely selected probiotics, often in combination with prior antibiotic treatment, may facilitate the restoration of symbiotic microbiota to increase successful conception and assisted reproductive technology outcomes. However, clarity on this issue from fuller research is currently hampered by a lack of consistency and harmonization in clinical studies: various lactobacilli and bifidobacteria species have been delivered through both the oral and vaginal routes, in different dosages, for different treatment durations. This commentary explores the intricate relationship between the microbiota in the cervicovaginal area and gut of women, exploring their potential contribution to infertility. It highlights ongoing research on the use of probiotic formulations in improving pregnancy outcomes, critically examining the divergent findings in these studies, which complicate a conclusive assessment of the efficacy of these interventions.


Asunto(s)
Endometriosis , Infertilidad Femenina , Probióticos , Embarazo , Femenino , Humanos , Infertilidad Femenina/terapia , Infertilidad Femenina/etiología , Vagina/microbiología , Resultado del Embarazo , Endometriosis/complicaciones , Probióticos/uso terapéutico
6.
Nutrition ; 121: 112353, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402669

RESUMEN

OBJECTIVE: The same microbial species isolated from blood simultaneously drawn from a central venous catheter hub and a peripheral vein (paired blood cultures) during parenteral nutrition may be assumed to represent the same strain. This case report provides an example of this assumption being incorrect along with a comparator example of it being correct. This has implications for interpretation of differential time to positivity and differential quantitative blood cultures during investigation of suspected intraluminal intravascular catheter or cannula bloodstream infection. CASE DESCRIPTION: Two patients ages ≥18 y prescribed parenteral nutrition each had positive paired blood cultures that had been taken for suspected catheter bloodstream infection because of temperature spikes ≥38°C. The paired Staphylococcus epidermidis isolates from the first patient and the paired Enterococcus faecium isolates from the second patient were each tested beyond routine clinical care to establish if they could be different strains. The central and peripheral isolates of Staphylococcus epidermidis from the first patient were different strains based on hospital-reported antibiograms, genomic DNA profiles, thermograms, and weaker growth and different sizes of colonies of the central strain compared with the peripheral strain. There were no such differences for the isolates of Enterococcus faecium from the second patient. RESULTS: The central and peripheral isolates of Staphylococcus epidermidis from the first patient were different strains based on hospital-reported antibiograms, genomic DNA profiles, thermograms, and weaker growth and different sizes of colonies of the central strain compared with the peripheral strain. There were no such differences for the isolates of Enterococcus faecium from the second patient. CONCLUSION: This case report indicates consideration should be given to reporting whether bacteria have been identified at either species or strain level if differential time to positivity or differential quantitative blood cultures are used to define catheter or cannula bloodstream infection.


Asunto(s)
Bacteriemia , Sepsis , Humanos , Cultivo de Sangre , Bacteriemia/microbiología , Sepsis/complicaciones , Catéteres/efectos adversos , ADN , Nutrición Parenteral/efectos adversos
7.
Int J Pharm ; 652: 123741, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181989

RESUMEN

Artificial intelligence (AI) is a revolutionary technology that is finding wide application across numerous sectors. Large language models (LLMs) are an emerging subset technology of AI and have been developed to communicate using human languages. At their core, LLMs are trained with vast amounts of information extracted from the internet, including text and images. Their ability to create human-like, expert text in almost any subject means they are increasingly being used as an aid to presentation, particularly in scientific writing. However, we wondered whether LLMs could go further, generating original scientific research and preparing the results for publication. We taskedGPT-4, an LLM, to write an original pharmaceutics manuscript, on a topic that is itself novel. It was able to conceive a research hypothesis, define an experimental protocol, produce photo-realistic images of 3D printed tablets, generate believable analytical data from a range of instruments and write a convincing publication-ready manuscript with evidence of critical interpretation. The model achieved all this is less than 1 h. Moreover, the generated data were multi-modal in nature, including thermal analyses, vibrational spectroscopy and dissolution testing, demonstrating multi-disciplinary expertise in the LLM. One area in which the model failed, however, was in referencing to the literature. Since the generated experimental results appeared believable though, we suggest that LLMs could certainly play a role in scientific research but with human input, interpretation and data validation. We discuss the potential benefits and current bottlenecks for realising this ambition here.


Asunto(s)
Inteligencia Artificial , Biofarmacia , Humanos , Vibración
8.
Nutrition ; 119: 112319, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194818

RESUMEN

OBJECTIVES: Because bloodstream infection and venous catheter (or cannula) bloodstream infection are associated with high morbidity and cost, early identification and treatment are important. Isothermal microcalorimetry can detect microbial growth using thermal power (heat flow), essentially in real time. The aim of this study was to examine the potential of this technique in clinical practice. METHODS: Thermal power of wild-type bacteria (Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae, and Enterococcus faecium) isolated from blood cultures of adult inpatients receiving parenteral nutrition in routine clinical practice was measured at 37°C every 10s using a Thermometric 2277 instrument. Temporal patterns of heat flow were used to detect the presence of bacteria, differentiate between them, and test their antibiotic sensitivity. Within and between batch reproducibility (% coefficient of variation [%CV]) was also established. RESULTS: Isothermal microcalorimetry always correctly detected the absence or presence of wild-type bacteria. Thermograms differed distinctly between species. Key thermographic features, such as peak heights, timing of peak heights, and interval between peak heights, were highly reproducible within each species (within-batch %CV usually about ≤1%, although between-batch %CV was usually higher). The antibiotic sensitivities (tested only for S. epidermidis and K. pneumoniae) confirmed the results obtained from the hospital laboratory. CONCLUSIONS: Isothermal microcalorimetry is a promising and highly reproducible real-time measurement technique with potential application to the investigation, species identification, and targeted antibiotic treatment of bloodstream infection and venous catheter (or cannula) bloodstream infection.


Asunto(s)
Escherichia coli , Sepsis , Adulto , Humanos , Reproducibilidad de los Resultados , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Catéteres
9.
Adv Healthc Mater ; 13(3): e2301759, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861058

RESUMEN

Conductive materials have played a significant role in advancing society into the digital era. Such materials are able to harness the power of electricity and are used to control many aspects of daily life. Conductive polymers (CPs) are an emerging group of polymers that possess metal-like conductivity yet retain desirable polymeric features, such as processability, mechanical properties, and biodegradability. Upon receiving an electrical stimulus, CPs can be tailored to achieve a number of responses, such as harvesting energy and stimulating tissue growth. The recent FDA approval of a CP-based material for a medical device has invigorated their research in healthcare. In drug delivery, CPs can act as electrical switches, drug release is achieved at a flick of a switch, thereby providing unprecedented control over drug release. In this review, recent developments in CP as electroactive polymers for voltage-stimuli responsive drug delivery systems are evaluated. The review demonstrates the distinct drug release profiles achieved by electroactive formulations, and both the precision and ease of stimuli response. This level of dynamism promises to yield "smart medicines" and warrants further research. The review concludes by providing an outlook on electroactive formulations in drug delivery and highlighting their integral roles in healthcare IoT.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polímeros , Liberación de Fármacos , Hidrogeles , Conductividad Eléctrica
10.
Pharmaceutics ; 15(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004607

RESUMEN

Three-dimensional (3D) printing is an advanced pharmaceutical manufacturing technology, and concerted efforts are underway to establish its applicability to various industries. However, for any technology to achieve widespread adoption, robustness and reliability are critical factors. Machine vision (MV), a subset of artificial intelligence (AI), has emerged as a powerful tool to replace human inspection with unprecedented speed and accuracy. Previous studies have demonstrated the potential of MV in pharmaceutical processes. However, training models using real images proves to be both costly and time consuming. In this study, we present an alternative approach, where synthetic images were used to train models to classify the quality of dosage forms. We generated 200 photorealistic virtual images that replicated 3D-printed dosage forms, where seven machine learning techniques (MLTs) were used to perform image classification. By exploring various MV pipelines, including image resizing and transformation, we achieved remarkable classification accuracies of 80.8%, 74.3%, and 75.5% for capsules, tablets, and films, respectively, for classifying stereolithography (SLA)-printed dosage forms. Additionally, we subjected the MLTs to rigorous stress tests, evaluating their scalability to classify over 3000 images and their ability to handle irrelevant images, where accuracies of 66.5% (capsules), 72.0% (tablets), and 70.9% (films) were obtained. Moreover, model confidence was also measured, and Brier scores ranged from 0.20 to 0.40. Our results demonstrate promising proof of concept that virtual images exhibit great potential for image classification of SLA-printed dosage forms. By using photorealistic virtual images, which are faster and cheaper to generate, we pave the way for accelerated, reliable, and sustainable AI model development to enhance the quality control of 3D-printed medicines.

11.
Int J Pharm ; 643: 123286, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37532009

RESUMEN

Vat photopolymerization has garnered interest from pharmaceutical researchers for the fabrication of personalised medicines, especially for drugs that require high precision dosing or are heat labile. However, the 3D printed structures created thus far have been insoluble, limiting printable dosage forms to sustained-release systems or drug-eluting medical devices which do not require dissolution of the printed matrix. Resins that produce water-soluble structures will enable more versatile drug release profiles and expand potential applications. To achieve this, instead of employing cross-linking chemistry to fabricate matrices, supramolecular chemistry may be used to impart dynamic interaction between polymer chains. In this study, water-soluble drug-loaded printlets (3D printed tablets) are fabricated via digital light processing (DLP) 3DP for the first time. Six formulations with varying ratios of an electrolyte acrylate monomer, [2-(acryloyloxy)ethyl]trimethylammonium chloride (TMAEA), and a co-monomer, 1-vinyl-2-pyrrolidone (NVP), were prepared to produce paracetamol-loaded printlets. 1H NMR spectroscopy analysis confirmed the integration of TMAEA and NVP in the polymer, and residual TMAEA monomers were found to be present only in trace amounts (0.71 - 1.37 %w/w). The apparent molecular mass of the photopolymerised polymer was found to exceed 300,000 Da with hydrodynamic radii of 15 - 20 nm, estimated based on 1H DOSY NMR measurements The loaded paracetamol was completely released from the printlets between 45 minutes to 5 hours. In vivo single-dose acute toxicity studies in rats suggest that the printlets did not cause any tissue damage. The findings reported in this study represent a significant step towards the adoption of vat photopolymerization-based 3DP to produce personalised medicines.


Asunto(s)
Acetaminofén , Tecnología Farmacéutica , Animales , Ratas , Acetaminofén/química , Tecnología Farmacéutica/métodos , Impresión Tridimensional , Polímeros/química , Liberación de Fármacos , Comprimidos/química
12.
Int J Pharm X ; 6: 100200, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37564112

RESUMEN

The combination of poorly-soluble drugs with small molecule co-formers to generate amorphous solid dispersions (ASDs) has great potential to improve dissolution rate and kinetic solubility, and thus increase the bioavailability of these active ingredients. However, such ASDs are known to be unstable and to crystallise upon storage or heating. In this work, we explore the crystallisation of flufenamic acid (FFA) from ASDs prepared with trehalose. FFA-trehalose mixtures were prepared at a range of w/w composition ratios, heated to melting and crash cooled to form ASDs. They were then subject to a further heat/cool cycle, which was monitored by simultaneous differential scanning calorimetry - X-ray diffraction to observe the phase changes occurring. These varied with the composition of the blend. Upon short-term storage, formulations with low trehalose contents (FFA:trehalose 5:1 w/w) recrystallised into form I FFA, while higher trehalose contents crystallised to FFA form IV. When heated, all FFA trehalose combinations ultimately recrystallised into form I before melting. Upon a second cooling cycle, systems with low trehalose content (FFA:trehalose 5:1 w/w) recrystallised into form IV, while higher trehalose contents led to FFA form I. It is thus clear that even with a single excipient it is possible to control the crystallisation pathway through judicious choice of the formulation parameters.

13.
Int J Pharm X ; 5: 100184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37396623

RESUMEN

Pharmaceutical 3D printing (3DP) is one of the emerging enabling technologies of personalised medicines as it affords the ability to fabricate highly versatile dosage forms. In the past 2 years, national medicines regulatory authorities have held consultations with external stakeholders to adapt regulatory frameworks to embrace point-of-care manufacturing. The proposed concept of decentralized manufacturing (DM) involves the provision of feedstock intermediates (pharma-inks) prepared by pharmaceutical companies to DM sites for manufacturing into the final medicine. In this study, we examine the feasibility of this model, with respect to both manufacturing and quality control. Efavirenz-loaded granulates (0-35%w/w) were produced by a manufacturing partner and shipped to a 3DP site in a different country. Direct powder extrusion (DPE) 3DP was subsequently used to prepare printlets (3D printed tablets), with mass ranging 266-371 mg. All printlets released more than 80% drug load within the first 60 min of the in vitro drug release test. An in-line near-infrared spectroscopy system was used as a process analytical technology (PAT) to quantify the printlets' drug load. Calibration models were developed using partial least squares regression, which showed excellent linearity (R2 = 0.9833) and accuracy (RMSE = 1.0662). Overall, this work is the first to report the use of an in-line NIR system to perform real-time analysis of printlets prepared using pharma-inks produced by a pharmaceutical company. By demonstrating the feasibility of the proposed distribution model through this proof-of-concept study, this work paves the way for investigation of further PAT tools for quality control in 3DP point-of-care manufacturing.

14.
Int J Pharm X ; 5: 100176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37396625

RESUMEN

Infliximab is a monoclonal antibody that plays an important role in the management and treatment of chronic inflammatory bowel diseases (IBD). Due to its macromolecular structure, its delivery through the oral route is challenging, limiting its administration to only via the parenteral route. The rectal route offers an alternative way for administering infliximab, allowing it to be localised at the disease site and circumventing its passage across the alimentary canal and thus, maintaining its integrity and bioactivity. Three-dimensional (3D) printing is an advanced production technology that permits the creation of dose-flexible drug products from digital designs. The current study assessed the feasibility of utilising semi-solid extrusion 3D printing for the fabrication of infliximab-loaded suppositories for the local treatment of IBD. Various printing inks composed of Gelucire® (48/16 or 44/14) mixed with coconut oil and/or purified water were investigated. It was shown that following reconstitution in water, the infliximab solution can be directly incorporated into the printing ink of Gelucire® 48/16 and can withstand the extrusion process, resulting in well-defined suppositories. Since water content and temperature are critical for safeguarding infliximab's potency, the effect of changing the composition of the printing inks and printing parameters on infliximab's biologic efficiency was evaluated by measuring its binding capacity (i.e., the amount of infliximab that actively binds to its antigen to exert an effect). Despite drug loading assays showing that infliximab remains intact following printing, it was found that the incorporation of water in isolation results in only ∼65% binding capacity. However, when oil is added to the mixture, infliximab's binding capacity increases up to ∼85%. These promising results demonstrate that 3D printing has the potential to be exploited as a novel platform for fabricating dosage forms containing biopharmaceuticals, avoiding patients' compliance issues observed with injectables and addressing their unmet needs.

15.
Cryst Growth Des ; 23(5): 3820-3833, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37159655

RESUMEN

Phase transitions in crystalline molecular solids have important implications in the fundamental understanding of materials properties and in the development of materials applications. Herein, we report the solid-state phase transition behavior of 1-iodoadamantane (1-IA) investigated using a multi-technique strategy [synchrotron powder X-ray diffraction (XRD), single-crystal XRD, solid-state NMR, and differential scanning calorimetry (DSC)], which reveals complex phase transition behavior on cooling from ambient temperature to ca. 123 K and on subsequent heating to the melting temperature (348 K). Starting from the known phase of 1-IA at ambient temperature (phase A), three low-temperature phases are identified (phases B, C, and D); the crystal structures of phases B and C are reported, together with a re-determination of the structure of phase A. Remarkably, single-crystal XRD shows that some individual crystals of phase A transform to phase B, while other crystals of phase A transform instead to phase C. Results (from powder XRD and DSC) on cooling a powder sample of phase A are fully consistent with this behavior while also revealing an additional transformation pathway from phase A to phase D. Thus, on cooling, a powder sample of phase A transforms partially to phase C (at 229 K), partially to phase D (at 226 K) and partially to phase B (at 211 K). During the cooling process, each of the phases B, C, and D is formed directly from phase A, and no transformations are observed between phases B, C, and D. On heating the resulting triphasic powder sample of phases B, C, and D from 123 K, phase B transforms to phase D (at 211 K), followed by the transformation of phase D to phase C (at 255 K), and finally, phase C transforms to phase A (at 284 K). From these observations, it is apparent that different crystals of phase A, which are ostensibly identical at the level of information revealed by XRD, must actually differ in other aspects that significantly influence their low-temperature phase transition pathways. This unusual behavior will stimulate future studies to gain deeper insights into the specific properties that control the phase transition pathways in individual crystals of this material.

16.
Int J Pharm ; 639: 122926, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37030639

RESUMEN

Achieving carbon neutrality is seen as an important goal in order to mitigate the effects of climate change, as carbon dioxide is a major greenhouse gas that contributes to global warming. Many countries, cities and organizations have set targets to become carbon neutral. The pharmaceutical sector is no exception, being a major contributor of carbon emissions (emitting approximately 55% more than the automotive sector for instance) and hence is in need of strategies to reduce its environmental impact. Three-dimensional (3D) printing is an advanced pharmaceutical fabrication technology that has the potential to replace traditional manufacturing tools. Being a new technology, the environmental impact of 3D printed medicines has not been investigated, which is a barrier to its uptake by the pharmaceutical industry. Here, the energy consumption (and carbon emission) of 3D printers is considered, focusing on technologies that have successfully been demonstrated to produce solid dosage forms. The energy consumption of 6 benchtop 3D printers was measured during standby mode and printing. On standby, energy consumption ranged from 0.03 to 0.17 kWh. The energy required for producing 10 printlets ranged from 0.06 to 3.08 kWh, with printers using high temperatures consuming more energy. Carbon emissions ranged between 11.60 and 112.16 g CO2 (eq) per 10 printlets, comparable with traditional tableting. Further analyses revealed that decreasing printing temperature was found to reduce the energy demand considerably, suggesting that developing formulations that are printable at lower temperatures can reduce CO2 emissions. The study delivers key initial insights into the environmental impact of a potentially transformative manufacturing technology and provides encouraging results in demonstrating that 3D printing can deliver quality medicines without being environmentally detrimental.


Asunto(s)
Dióxido de Carbono , Huella de Carbono , Tecnología Farmacéutica/métodos , Impresión Tridimensional , Comprimidos
17.
Int J Pharm X ; 5: 100165, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36876053

RESUMEN

Acute severe ulcerative colitis (ASUC) is a growing health burden that often requires treatment with multiple therapeutic agents. As inflammation is localised in the rectum and colon, local drug delivery using suppositories could improve therapeutic outcomes. Three-dimensional (3D) printing is a novel manufacturing tool that permits the combination of multiple drugs in personalised dosage forms, created based on each patient's disease condition. This study, for the first time, demonstrates the feasibility of producing 3D printed suppositories with two anti-inflammatory agents, budesonide and tofacitinib citrate, for the treatment of ASUC. As both drugs are poorly water-soluble, the suppositories' ability to self-emulsify was exploited to improve their performance. The suppositories were fabricated via semi-solid extrusion (SSE) 3D printing and contained tofacitinib citrate and budesonide in varying doses (10 or 5 mg; 4 or 2 mg, respectively). The suppositories displayed similar dissolution and disintegration behaviours irrespective of their drug content, demonstrating the flexibility of the technology. Overall, this study demonstrates the feasibility of using SSE 3D printing to create multi-drug suppositories for the treatment of ASUC, with the possibility of titrating the drug doses based on the disease progression.

18.
Int J Pharm ; 633: 122628, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36682506

RESUMEN

Three-dimensional (3D) printing is drastically redefining medicine production, offering digital precision and personalized design opportunities. One emerging 3D printing technology is selective laser sintering (SLS), which is garnering attention for its high precision, and compatibility with a wide range of pharmaceutical materials, including low-solubility compounds. However, the full potential of SLS for medicines is yet to be realized, requiring expertise and considerable time-consuming and resource-intensive trial-and-error research. Machine learning (ML), a subset of artificial intelligence, is an in silico tool that is accomplishing remarkable breakthroughs in several sectors for its ability to make highly accurate predictions. Therefore, the present study harnessed ML to predict the printability of SLS formulations. Using a dataset of 170 formulations from 78 materials, ML models were developed from inputs that included the formulation composition and characterization data retrieved from Fourier-transformed infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Multiple ML models were explored, including supervised and unsupervised approaches. The results revealed that ML can achieve high accuracies, by using the formulation composition leading to a maximum F1 score of 81.9%. Using the FT-IR, XRPD and DSC data as inputs resulted in an F1 score of 84.2%, 81.3%, and 80.1%, respectively. A subsequent ML pipeline was built to combine the predictions from FT-IR, XRPD and DSC into one consensus model, where the F1 score was found to further increase to 88.9%. Therefore, it was determined for the first time that ML predictions of 3D printability benefit from multi-modal data, combining numeric, spectral, thermogram and diffraction data. The study lays the groundwork for leveraging existing characterization data for developing high-performing computational models to accelerate formulation development.


Asunto(s)
Inteligencia Artificial , Impresión Tridimensional , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Láser , Aprendizaje Automático , Tecnología Farmacéutica/métodos
19.
Int J Pharm X ; 5: 100148, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590827

RESUMEN

Selective laser sintering (SLS) 3D printing is a revolutionary 3D printing technology that has been found capable of creating drug products with varied release profiles by changing the laser scanning speed. Here, SLS 3D printed formulations (printlets) loaded with a narrow therapeutic index drug (theophylline) were produced using SLS 3D printing at varying laser scanning speeds (100-180 mm/s). The use of reflectance Fourier Transform - Near Infrared (FT-NIR) spectroscopy was evaluated as a non-destructive approach to predicting 3D printed tablet density and drug release at 2 h and 4 h. The printed drug products formulated with a higher laser speed exhibited an accelerated drug release and reduced density compared with the slower laser scanning speeds. Univariate calibration models were developed based on a baseline shift in the spectra in the third overtone region upon changing physical properties. For density prediction, the developed univariate model had high linearity (R2 value = 0.9335) and accuracy (error < 0.029 mg/mm3). For drug release prediction at 2 h and 4 h, the developed univariate models demonstrated a linear correlation (R2 values of 0.9383 and 0.9167, respectively) and accuracy (error < 4.4%). The predicted vs. actual dissolution profiles were found to be statistically similar (f2 > 50) for all of the test printlets. Overall, this article demonstrates the feasibility of SLS 3D printing to produce drug products containing a narrow therapeutic index drug across a range of drug release profiles, as well as the potential for FT-NIR spectroscopy to predict the physical characteristics of SLS 3D printed drug products (drug release and density) as a non-destructive quality control method at the point-of-care.

20.
Int J Pharm ; 634: 122643, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36709014

RESUMEN

The oral delivery of peptide therapeutics could facilitate precision treatment of numerous gastrointestinal (GI) and systemic diseases with simple administration for patients. However, the vast majority of licensed peptide drugs are currently administered parenterally due to prohibitive peptide instability in the GI tract. As such, the development of GI-stable peptides is receiving considerable investment. This study provides researchers with the first tool to predict the GI stability of peptide therapeutics based solely on the amino acid sequence. Both unsupervised and supervised machine learning techniques were trained on literature-extracted data describing peptide stability in simulated gastric and small intestinal fluid (SGF and SIF). Based on 109 peptide incubations, classification models for SGF and SIF were developed. The best models utilized k-Nearest Neighbor (for SGF) and XGBoost (for SIF) algorithms, with accuracies of 75.1% (SGF) and 69.3% (SIF), and f1 scores of 84.5% (SGF) and 73.4% (SIF) under 5-fold cross-validation. Feature importance analysis demonstrated that peptides' lipophilicity, rigidity, and size were key determinants of stability. These models are now available to those working on the development of oral peptide therapeutics.


Asunto(s)
Productos Biológicos , Humanos , Productos Biológicos/metabolismo , Administración Oral , Péptidos , Tracto Gastrointestinal/metabolismo , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA