Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273107

RESUMEN

Despite therapy with growth hormone (GH) in children with Prader-Willi syndrome (PWS), low bone mineral density and various orthopedic deformities have been observed often. Therefore, this study aimed to analyze bone markers, with an emphasis on vitamin K-dependent proteins (VKDPs), in normal-weight children with PWS undergoing GH therapy and a low-energy dietary intervention. Twenty-four children with PWS and 30 healthy children of the same age were included. Serum concentrations of bone alkaline phosphatase (BALP), osteocalcin (OC), carboxylated-OC (Gla-OC), undercarboxylated-OC (Glu-OC), periostin, osteopontin, osteoprotegerin (OPG), sclerostin, C-terminal telopeptide of type I collagen (CTX-I), and insulin-like growth factor-I (IGF-I) were determined using immunoenzymatic methods. OC levels and the OC/CTX-I ratios were lower in children with PWS than in healthy children (p = 0.011, p = 0.006, respectively). Glu-OC concentrations were lower (p = 0.002), but Gla-OC and periostin concentrations were higher in patients with PWS compared with the controls (p = 0.005, p < 0.001, respectively). The relationships between IGF-I and OC (p = 0.013), Gla-OC (p = 0.042), and the OC/CTX-I ratio (p = 0.017) were significant after adjusting for age in children with PWS. Bone turnover disorders in children with PWS may result from impaired bone formation due to the lower concentrations of OC and the OC/CTX-I ratio. The altered profile of OC forms with elevated periostin concentrations may indicate more intensive carboxylation processes of VKDPs in these patients. The detailed relationships between the GH/IGF-I axis and bone metabolism markers, particularly VKDPs, in children with PWS requires further research.


Asunto(s)
Biomarcadores , Huesos , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/tratamiento farmacológico , Síndrome de Prader-Willi/sangre , Niño , Masculino , Femenino , Proyectos Piloto , Huesos/metabolismo , Huesos/efectos de los fármacos , Biomarcadores/sangre , Hormona de Crecimiento Humana/sangre , Preescolar , Osteocalcina/sangre , Osteocalcina/metabolismo , Adolescente , Factor I del Crecimiento Similar a la Insulina/metabolismo , Densidad Ósea/efectos de los fármacos , Fosfatasa Alcalina/sangre , Estudios de Casos y Controles
2.
Plant Physiol Biochem ; 216: 109129, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39288571

RESUMEN

The oomycete Phytophthora infestans is one of the most destructive phytopathogens globally. It has a proven ability to adapt to changing environments rapidly; however, molecular mechanisms responsible for host invasion and adaptation to new environmental conditions still need to be explored. The study aims to understand the epigenetic mechanisms exploited by P. infestans in response to nitrosative stress conditions created by the (micro)environment and the host plant. To characterize reactive nitrogen species (RNS)-dependent acetylation profiles in avirulent/virulent (avr/vr) P. infestans, a transient gene expression, ChIP and immunoblot analyses, and nitric oxide (NO) emission by chemiluminescence were used in combination with the pharmacological approach. Nitrosative stress increased total H3/H4 acetylation and some histone acetylation marks, mainly in sporulating hyphae of diverse (avr/vr) isolates and during potato colonization. These results correlated with transcriptional up-regulation of acetyltransferases PifHAC3 and PifHAM1, catalyzing H3K56 and H4K16 acetylation, respectively. NO or peroxynitrite-mediated changes were also associated with H3K56 and H4K16 mark deposition on the critical pathogenicity-related gene promoters (CesA1, CesA2, CesA3, sPLD-like1, Hmp1, and Avr3a) elevating their expression. Our study highlights RNS-dependent transcriptional reprogramming via histone acetylation of essential gene expression in the sporulating and biotrophic phases of plant colonization by P. infestans as a tool promoting its evolutionary plasticity.

3.
Nutrients ; 16(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38999757

RESUMEN

The role of bone and muscle as endocrine organs may be important contributing factors for children's growth and development. Myokines, secreted by muscle cells, play a role in regulating bone metabolism, either directly or indirectly. Conversely, markers of bone metabolism, reflecting the balance between bone formation and bone resorption, can also influence myokine secretion. This study investigated a panel of serum myokines and their relationships with bone metabolism markers in children following vegetarian and omnivorous diets. A cohort of sixty-eight healthy prepubertal children, comprising 44 vegetarians and 24 omnivores, participated in this study. Anthropometric measurements, dietary assessments, and biochemical analyses were conducted. To evaluate the serum concentrations of bone markers and myokines, an enzyme-linked immunosorbent assay (ELISA) was used. The studied children did not differ regarding their serum myokine levels, except for a higher concentration of decorin in the vegetarian group (p = 0.020). The vegetarians demonstrated distinct pattern of bone metabolism markers compared to the omnivores, with lower levels of N-terminal propeptide of type I procollagen (P1NP) (p = 0.001) and elevated levels of C-terminal telopeptide of type I collagen (CTX-I) (p = 0.018). Consequently, the P1NP/CTX-I ratio was significantly decreased in the vegetarians. The children following a vegetarian diet showed impaired bone metabolism with reduced bone formation and increased bone resorption. Higher levels of decorin, a myokine involved in collagen fibrillogenesis and essential for tissue structure and function, may suggest a potential compensatory mechanism contributing to maintaining bone homeostasis in vegetarians. The observed significant positive correlations between myostatin and bone metabolism markers, including P1NP and soluble receptor activator of nuclear factor kappa-B ligand (sRANKL), suggest an interplay between muscle and bone metabolism, potentially through the RANK/RANKL/OPG signaling pathway.


Asunto(s)
Biomarcadores , Huesos , Dieta Vegetariana , Humanos , Niño , Biomarcadores/sangre , Masculino , Femenino , Huesos/metabolismo , Vegetarianos , Dieta , Citocinas/sangre , Colágeno Tipo I/sangre , Mioquinas
4.
Mol Plant Pathol ; 25(7): e13497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034655

RESUMEN

Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.


Asunto(s)
Epigénesis Genética , Histonas , Phytophthora , Phytophthora/genética , Phytophthora/fisiología , Phytophthora/patogenicidad , Phytophthora/metabolismo , Histonas/metabolismo , Acetilación , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Filogenia
5.
J Mother Child ; 28(1): 14-22, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639100

RESUMEN

BACKGROUND: Assessing bone turnover in paediatric populations is crucial for understanding the physiological changes occurring during skeletal development and identifying potential abnormalities. The objective of this study was to assess osteocalcin (OC), bone alkaline phosphatase (BALP), and C-terminal telopeptide of type I collagen (CTX-I) levels reflecting bone formation and resorption for age and sex in Polish healthy children and adolescents. MATERIALS AND METHODS: A total of 355 healthy normal-weight children and adolescents (46.5% girls) aged 1-18 years old were recruited. Total body less head (TBLH) and spine L1-L4 were used in children to assess bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). Bone marker concentrations were determined by immunoenzymatic methods. RESULTS: Bone marker levels in girls and boys started with higher values in the first year of life and subsequently decreased until reaching a nadir during the prepubertal period. The pubertal peak values of bone markers were reached at 11-13 years old in boys and at 9-11 years old in girls. After puberty, the adolescents showed a gradual decline in bone marker concentrations to the values observed in adults. We found positive correlations between OC level and TBLH-BMD (r = 0.329, p = 0.002), TBLH-BMD Z-score (r = 0.245, p = 0.023), and L1-L4 BMD (r = 0.280, p = 0.009) in the prepubertal group. CONCLUSIONS: We showed serum levels of bone turnover markers-BALP, OC, and CTX-I-in relation to age and sex in healthy Polish children and adolescents. The age intervals of these markers for girls and boys aged 1-18 years old may be clinically useful in the assessment of bone metabolism in individuals with skeletal disorders.


Asunto(s)
Densidad Ósea , Huesos , Masculino , Niño , Femenino , Humanos , Adolescente , Lactante , Preescolar , Polonia , Densidad Ósea/fisiología , Remodelación Ósea/fisiología , Biomarcadores , Fosfatasa Alcalina
6.
Molecules ; 29(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338429

RESUMEN

Photodynamic inactivation (PDI) is a highly effective treatment that can eliminate harmful microorganisms in a variety of settings. This study explored the efficacy of a curcumin-rich extract, Curcuma L., (Cur)- and essential oil component, trans-cinnamaldehyde, (Ca)-mediated PDI against Listeria monocytogenes ATCC 15313 (Lm) including planktonic cells and established biofilms on silicone rubber (Si), polytetrafluoroethylene (PTFE), stainless steel 316 (SS), and polyethylene terephthalate (PET). Applying Ca- and Cur-mediated PDI resulted in planktonic cell reductions of 2.7 and 6.4 log CFU/cm2, respectively. Flow cytometric measurements (FCMs) coupled with CFDA/PI and TOTO®-1 staining evidenced that Ca- doubled and Cur-mediated PDI quadrupled the cell damage. Moreover, the enzymatic activity of Lm cells was considerably reduced by Cur-mediated PDI, indicating its superior efficacy. Photosensitization also affected Lm biofilms, but their reduction did not exceed 3.7 log CFU/cm2. Cur-mediated PDI effectively impaired cells on PET and PTFE, while Ca-mediated PDI caused no (TOTO®-1) or only slight (PI) cell damage, sparing the activity of cells. In turn, applying Ca-mediate PDI to Si largely diminished the enzymatic activity in Lm. SS contained 20% dead cells, suggesting that SS itself impacts Lm viability. In addition, the efficacy of Ca-mediated PDI was enhanced on the SS, leading to increased damage to the cells. The weakened viability of Lm on Si and SS could be linked to unfavorable interactions with the surfaces, resulting in a better effect of Ca against Lm. In conclusion, Cur demonstrated excellent photosensitizing properties against Lm in both planktonic and biofilm states. The efficacy of Ca was lower than that of Cur. However, Ca bears potent antibiofilm effects, which vary depending on the surface on which Lm resides. Therefore, this study may help identify more effective plant-based compounds to combat L. monocytogenes in an environmentally sustainable manner.


Asunto(s)
Acroleína/análogos & derivados , Listeria monocytogenes , Compuestos de Quinolinio , Tiazoles , Curcuma , Antibacterianos/farmacología , Biopelículas , Politetrafluoroetileno
7.
Front Plant Sci ; 14: 1148222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546259

RESUMEN

Phytophthora infestans, a representative of phytopathogenic oomycetes, have been proven to cope with redundant sources of internal and host-derived reactive nitrogen species (RNS). To gain insight into its nitrosative stress resistance mechanisms, metabolic sensors activated in response to nitrosative challenge during both in vitro growth and colonization of the host plant were investigated. The conducted analyses of gene expression, protein accumulation, and enzyme activity reveal for the first time that P. infestans (avirulent MP946 and virulent MP977 toward potato cv. Sarpo Mira) withstands nitrosative challenge and has an efficient system of RNS elimination. The obtained data indicate that the system protecting P. infestans against nitric oxide (NO) involved the expression of the nitric oxide dioxygenase (Pi-NOD1) gene belonging to the globin family. The maintenance of RNS homeostasis was also supported by an elevated S-nitrosoglutathione reductase activity and upregulation of peroxiredoxin 2 at the transcript and protein levels; however, the virulence pattern determined the expression abundance. Based on the experiments, it can be concluded that P. infestans possesses a multifarious system of metabolic sensors controlling RNS balance via detoxification, allowing the oomycete to exist in different micro-environments flexibly.

8.
Pathogens ; 12(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513801

RESUMEN

Staphylococcus aureus is one of the most important foodborne pathogens. S. aureus has the capability to produce a variety of toxins, including staphylococcal enterotoxins (SEs). The aim of this study was to evaluate the survival rate of S. aureus cells and analyze enterotoxins gene expression after exposure to osmotic stress and acidic/alkaline stress. To determine survival rates, the traditional plate counting method and flow cytometry were used. The expression levels of the enterotoxin genes were performed by quantitative reverse transcription PCR (RT-qPCR). Expression changes differed depending on the stressors chosen. The obtained results in this study showed the effect of critical food-related stress conditions on SE gene expression in S. aureus. The study showed different expression levels of the tested enterotoxins genes depending on the stress. The most tested enterotoxin genes (seg, sei, and selo) after exposure to pH = 4.5 stress have similar expression as in the optimal condition. After alkaline treatment (pH = 9.6), a similar expression gene value as for the optimal condition was observed. The analysis of gene expression in response to stress caused by NaCl, showed that the expression of selp decreased, whereas selu, selm, and selo genes increased. A significantly decreased expression of the sea gene was observed.

9.
Microorganisms ; 11(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110488

RESUMEN

Milk, due to its diversity in terms of its nutritional content, is an important element of the human diet, as well as a good medium for the development of bacteria. The genus Bacillus contains ubiquitous aerobic, rod-shaped, endospore-producing gram-positive bacteria. Representatives of the Bacillus cereus group and the Bacillus subtilis group contribute to shortening the shelf life of milk and dairy products by degrading milk components and its additives. They also produce a number of heat-stable toxins and can cause a number of ailments, mainly in the digestive system. The aim of this research was to identify Bacillus sp. strains isolated from raw milk and to determine their antibiotic resistance. Strains isolated from raw milk samples (n = 45) were identified by MALDI-TOF MS. Ninety strains of Bacillus sp. were identified, for which the antibiotic resistance phenotype was determined. A total of 90 strains of Bacillus were classified in five groups (the Bacillus cereus group (n = 35), B. licheniformis (n = 7), the B. subtilis group (n = 29), B. pumilus (n = 16), and Bacillus sp. (n = 3). All isolates were susceptible to chloramphenicol and meropenem. The antibiotic resistance profiles of the tested groups of Bacillus spp. differed from each other, which is of particular concern in relation to multidrug-resistant representatives of the B. cereus group resistant to cefotaxime (94.29%), ampicillin (88.57%), rifampicin (80%), and norfloxacin (65.71%). Our study provides data on the prevalence and antibiotic sensitivity of Bacillus sp. In raw milk, suggesting a potential risk to health and the dairy industry.

10.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37107302

RESUMEN

Oxidative stress is implicated in the pathophysiology of Prader-Willi syndrome (PWS), but there are no data on these disorders in non-obese children with PWS. Therefore, the presented study examined total oxidant capacity (TOC), total antioxidant capacity (TAC), the oxidative stress index (OSI), and adipokine levels in 22 non-obese children with PWS during dietary intervention and growth hormone treatment compared with 25 non-obese healthy children. Serum concentrations of TOC, TAC, nesfatin-1, leptin, hepcidin, ferroportin, and ferritin were determined using immunoenzymatic methods. We found that TOC concentrations were higher by 50% (p = 0.006) in patients with PWS than in healthy children, but no significant differences in TAC concentrations were observed between these groups. The OSI was higher in children with PWS than in the controls (p = 0.002). We found positive associations between TOC values and the percentage of the Estimated Energy Requirement, body mass index (BMI) Z-score, percentage of fat mass, and leptin, nesfatin-1, and hepcidin concentrations in patients with PWS. A positive association was also found between the OSI and nesfatin-1 levels. These observations suggest that higher daily energy intake and weight gain may be accompanied by an increasing prooxidant state in these patients. Adipokines such as leptin, nesfatin-1, or hepcidin may also play a role in the prooxidant state in non-obese children with PWS.

11.
Nutrients ; 15(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36986105

RESUMEN

Scientific studies reported that most vegetarians meet the total protein requirements; however, little is known about their amino acid intakes. We aimed to assess dietary intake and serum amino acid levels in relation to bone metabolism markers in prepubertal children on vegetarian and traditional diets. Data from 51 vegetarian and 25 omnivorous children aged 4-9 years were analyzed. Dietary intake of macro- and micronutrients were assessed using the nutritional program Dieta 5®. Serum amino acid analysis was performed using high-pressure liquid chromatography technique, 25-hydroxyvitamin D and parathormone-electrochemiluminescent immunoassay, and bone metabolism markers, albumin, and prealbumin levels using enzyme-linked immunosorbent assay. Vegetarian children had a significantly lower intake of protein and amino acids with median differences of about 30-50% compared to omnivores. Concentrations of four amino acids (valine, lysine, leucine, isoleucine) in serum varied significantly by diet groups and were lower by 10-15% in vegetarians than meat-eaters. Vegetarian children also had lower (p < 0.001) serum albumin levels compared to omnivores. Among bone markers, they had higher (p < 0.05) levels of C-terminal telopeptide of collagen type I (CTX-I) than omnivores. Correlation patterns between amino acids and bone metabolism markers differed in the vegetarian and omnivore groups. Out of bone markers, especially osteoprotegerin was positively correlated with several amino acids, such as tryptophan, alanine, aspartate, glutamine, and serine, and ornithine in vegetarians. Vegetarian children consumed apparently sufficient but lower protein and amino acids compared to omnivores. In circulation these differences were less marked than in the diet. Significantly lower amino acid intake and serum levels of valine, lysine, leucine, and isoleucine as well as the observed correlations between serum amino acids and biochemical bone marker levels indicated the relations between diet, protein quality, and bone metabolism.


Asunto(s)
Aminoácidos , Dieta Vegetariana , Humanos , Niño , Lisina , Leucina , Isoleucina , Estado Nutricional , Dieta , Vegetarianos , Ingestión de Alimentos , Valina
12.
Nutrients ; 15(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904239

RESUMEN

BACKGROUND: Despite observable improvement in the treatment outcomes of patients with Prader-Willi syndrome (PWS), adequate weight control is still a clinical problem. Therefore, the aim of this study was to analyze the profiles of neuroendocrine peptides regulating appetite-mainly nesfatin-1 and spexin-in children with PWS undergoing growth hormone treatment and reduced energy intake. METHODS: Twenty-five non-obese children (aged 2-12 years) with PWS and 30 healthy children of the same age following an unrestricted age-appropriate diet were examined. Serum concentrations of nesfatin-1, spexin, leptin, leptin receptor, total adiponectin, high molecular weight adiponectin, proinsulin, insulin-like growth factor-I, and total and functional IGF-binding protein-3 concentrations were determined using immunoenzymatic methods. RESULTS: The daily energy intake in children with PWS was lower by about 30% (p < 0.001) compared with the controls. Daily protein intake was similar in both groups, but carbohydrate and fat intakes were significantly lower in the patient group than the controls (p < 0.001). Similar values for nesfatin-1 in the PWS subgroup with BMI Z-score < -0.5 and the control group, while higher values in the PWS subgroup with BMI Z-score ≥ -0.5 (p < 0.001) were found. Spexin concentrations were significantly lower in both subgroups with PWS than the controls (p < 0.001; p = 0.005). Significant differences in the lipid profile between the PWS subgroups and the controls were also observed. Nesfatin-1 and leptin were positively related with BMI (p = 0.018; p = 0.001, respectively) and BMI Z-score (p = 0.031; p = 0.027, respectively) in the whole group with PWS. Both neuropeptides also correlated positively in these patients (p = 0.042). CONCLUSIONS: Altered profiles of anorexigenic peptides-especially nesfatin-1 and spexin-in non-obese children with Prader-Willi syndrome during growth hormone treatment and reduced energy intake were found. These differences may play a role in the etiology of metabolic disorders in Prader-Willi syndrome despite the applied therapy.


Asunto(s)
Nucleobindinas , Hormonas Peptídicas , Síndrome de Prader-Willi , Niño , Humanos , Adiponectina , Ghrelina , Hormona del Crecimiento/uso terapéutico , Leptina , Síndrome de Prader-Willi/sangre , Síndrome de Prader-Willi/terapia , Nucleobindinas/sangre , Hormonas Peptídicas/sangre
13.
Antioxidants (Basel) ; 12(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36978978

RESUMEN

Metabolic disorders present in women with polycystic ovary syndrome (PCOS) and the associated risk of obesity may result in increased oxidative stress and reproductive failure. Therefore, we evaluated the concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx), and reductase (GR), as well as nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associating protein1 (Keap1) in the serum of 56 women with PCOS divided according to the visceral to subcutaneous fat surface ratio (VAT/SAT) and waist-to-hip ratio (WHR) values. Antioxidant parameter levels were measured by competitive inhibition enzyme immunoassay technique. As the VAT/SAT ratio and WHR increased, we observed significantly higher concentrations of GSSG and Keap1 protein and a lower value of the GSSG/GSH ratio (R-index), which is considered an index of cellular redox (p < 0.05). Negative correlations were found between the R-index and body weight, BMI, WHR, subcutaneous and visceral fat surface and the VAT/SAT ratio, and total body fat; positive links were found with fat free mass and total body water. Opposite associations were noted between GSSG level and the aforementioned body composition parameters. Oxidative stress characterized by a depleted reduced-to-oxidized glutathione index is associated with anthropometric and body composition parameters in women with PCOS. In particular, abdominal obesity expressed by the VAT/SAT ratio and/or WHR seems to have a negative impact on glutathione status, which may lead to a disruption of many biological cell processes. The observed negative association of Keap1 with R-index suggests that the elevated oxidative changes dependent on the VAT/SAT ratio may lead to Nrf2 activation to promote antioxidant enzyme expression. Although the GSH/GSSG index as well as the VAT/SAT ratio appear to be good indicators of oxidative status, studies on a larger group of patients should continue to confirm these links among women with PCOS.

14.
Life (Basel) ; 13(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36836852

RESUMEN

Bacterial biofilm is one of the major hazards facing the food industry. Biofilm-forming ability is one of the most important virulence properties of enterococci. The genus Enterococcus includes pathogenic, spoilage, and pro-technological bacteria. The presence of enterococci in milk and dairy products is usually associated with inadequate hygiene practices. The study examined the isolates' capacity for biofilm formation and identification of the genetic determinants of its formation among 85 Enterococcus strains isolated from raw milk (n = 49) and soft-ripened cheeses made from unpasteurized milk (n = 36). E. faecalis and E. faecium were the dominant species. The obtained results showed that 41.4% isolates from milk and 50.0% isolates from cheeses were able to form biofilm. All of the isolates analyzed had at least one of the studied genes. As regards the isolates from raw milk, the most prevalent gene was the gelE (85.6%), followed by the asa1 (66.7%). None of the isolates from cheeses showed the presence of cylA and sprE. The most prevalent gene among the strains from this source was the epbC (94.4%), followed by the gelE (88.9%). In isolates from both sources, the presence of proteins from the Fsr group was noted the least frequently. Nevertheless, results showed that were no significant differences between the biofilm-producing Enterococcus spp. and non-biofilm-producing isolates in term of occurrences of tested virulence genes. The ability to produce a biofilm by enterococci isolated from raw milk or ready-to-eat products emphasizes the need for continuous monitoring of the mechanisms of microbial adhesion.

15.
Foods ; 12(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36766043

RESUMEN

The present study aimed to characterize and assess the diversity of CoNS strains as potential vectors for the spread of resistance to antimicrobial agents from RTE foods served in bars and restaurants. Eighty-five CoNS strains, obtained from 198 RTE food samples, were investigated. Sixty-seven CoNS isolates (78.8%) were resistant to at least one antibiotic tested, and 37 (43.5%) were multidrug resistant (MDR-CoNS). Moreover, CoNS strains contained genes conferring resistance to antibiotics critically important in medicine, i.e., ß-lactams [mecA (29.4%); blaZ (84.7%)], aminoglycosides [aac(6')-Ie-aph(2″)-Ia (45.9%); aph(2″)-Ic (3.5%)], macrolides, lincosamides and streptogramin B-MLSB [msrA/B (68.2%); ermB (40%) and mphC (4.7%)], tetracyclines [tetK (31.8%); tetM (16.5%) and/or tetL (2.35%)]. We also found the fusB/C/D genes responsible for the acquired low-level fusidic acid resistance (17.6%) and streptogramin resistance determinant vgaA in 30.6% of isolates. In three linezolid resistant strains (2 S. epidermidis and 1 S. warneri), mutation was detected, as demonstrated by L101V and V188I changes in the L3 protein amino acid sequences. The high frequency in RTE food of MDR-CoNS including methicillin-resistant (MR-CoNS) strains constitutes a direct risk to public health as they increase the gene pool from which pathogenic bacteria can pick up resistance traits.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36674132

RESUMEN

This paper provides a snapshot on the pathogenic traits within CoNS isolated from ready-to-eat (RTE) food. Eighty-five strains were subjected to biofilm and slime production, as well as biofilm-associated genes (icaA, icaD, icaB, icaC, eno, bap, bhp, aap, fbe, embP and atlE), the insertion sequence elements IS256 and IS257 and hemolytic genes. The results showed that the most prevalent determinants responsible for the primary adherence were eno (57.6%) and aap (56.5%) genes. The icaADBC operon was detected in 45.9% of the tested strains and was correlated to slime production. Moreover, most strains carrying the icaADBC operon simultaneously carried the IS257 insertion sequence element. Among the genes encoding for surface proteins involved in the adhesion to abiotic surfaces process, atlE was the most commonly (31.8%) followed by bap (4.7%) and bhp (1.2%). The MSCRAMMs, including fbe and embp were detected in the 11.8% and 28.2% of strains, respectively. A high occurrence of genes involved in the hemolytic toxin production were detected, such as hla_yiD (50.6%), hlb (48.2%), hld (41.2%) and hla_haem (34.1%). The results of the present study revealed an unexpected occurrence of the genes involved in biofilm production and the high hemolytic activity among the CoNS strains, isolated from RTE food, highlighting that this group seems to be acquiring pathogenic traits similar to those of S. aureus, suggesting the need to be included in the routine microbiological analyses of food.


Asunto(s)
Coagulasa , Infecciones Estafilocócicas , Humanos , Coagulasa/genética , Staphylococcus aureus/genética , Virulencia , Infecciones Estafilocócicas/microbiología , Reacción en Cadena de la Polimerasa , Staphylococcus/genética , Biopelículas , Elementos Transponibles de ADN
17.
Toxins (Basel) ; 16(1)2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38251234

RESUMEN

This study aimed to genotypic and phenotypic analyses of the enterotoxigenic potential of Staphylococcus spp. isolated from raw milk and raw milk cheeses. The presence of genes encoding staphylococcal enterotoxins (SEs), including the classical enterotoxins (sea-see), non-classical enterotoxins (seg-seu), exfoliative toxins (eta-etd) and toxic shock syndrome toxin-1 (tst-1) were investigated. Isolates positive for classical enterotoxin genes were then tested by SET-RPLA methods for toxin expression. Out of 75 Staphylococcus spp. (19 Staphylococcus aureus and 56 CoNS) isolates from raw milk (49/65.3%) and raw milk cheese samples (26/34.7%), the presence of enterotoxin genes was confirmed in 73 (97.3%) of them. Only one isolate from cheese sample (1.3%) was able to produce enterotoxin (SED). The presence of up to eight different genes encoding enterotoxins was determined simultaneously in the staphylococcal genome. The most common toxin gene combination was sek, eta present in fourteen isolates (18.7%). The tst-1 gene was present in each of the analyzed isolates from cheese samples (26/34.7%). Non-classical enterotoxins were much more frequently identified in the genome of staphylococcal isolates than classical SEs. The current research also showed that genes tagged in S. aureus were also identified in CoNS, and the total number of different genes detected in CoNS was seven times higher than in S. aureus. The obtained results indicate that, in many cases, the presence of a gene in Staphylococcus spp. is not synonymous with the ability of enterotoxins production. The differences in the number of isolates with genes encoding SEs and enterotoxin production may be mainly due to the limit of detection of the toxin production method used. This indicates the need to use high specificity and sensitivity methods for detecting enterotoxin in future studies.


Asunto(s)
Queso , Animales , Staphylococcus/genética , Staphylococcus aureus/genética , Leche , Enterotoxinas/genética
18.
Molecules ; 27(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235105

RESUMEN

Cheeses produced from unpasteurized milk by traditional production methods may contain many groups of microorganisms, including Staphylococcus aureus. The aim of this study was to determine the occurrence of S. aureus in the artisanal cheese production chain from unpasteurized milk. We investigated the prevalence of S. aureus strains isolated from various stages of artisanal cheese of unpasteurized milk production from farms in the northeastern and southern parts of Poland and characterized them. Characterization included antimicrobial susceptibility by microbroth dilution and biofilm formation by in vitro assay. Among all strains, the presence of enterotoxigenic genes and genes involved with biofilm formation and antibiotic resistance were screened by PCR-based methods. A total of 180 samples were examined. A high percentage of strains were resistant to penicillin (54/58.1%) and tobramycin (32/34.4%). Some tested isolates also showed resistance to the macrolide class of antibiotics: azithromycin, clarithromycin, and erythromycin at 17/18.3%, 15/16.1%, and 21/22.6%, respectively. Among tested isolates, we also found phenotypic resistance to oxacillin (9/9.7%) and cefoxitin (12/12.9%). The blaZ gene encoding penicillin resistance was the most common gene encoding antibiotic resistance among the tested strains. All isolates showing phenotypic resistance to cefoxitin possessed the mecA gene. The study also evaluated the prevalence of biofilm-associated genes, with eno the most frequently associated gene. Eighty-nine out of 93 S. aureus isolates (95.7%) possessed at least one enterotoxin-encoding gene. The results of this study showed that production of raw milk cheeses may be a source of antibiotic resistance and virulent S. aureus. Our results suggest that artisanal cheese producers should better control production hygiene.


Asunto(s)
Queso , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Azitromicina , Cefoxitina , Claritromicina , Enterotoxinas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Leche , Oxacilina , Polonia , Staphylococcus aureus , Tobramicina
19.
J Clin Med ; 11(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887780

RESUMEN

Optimal body weight and body composition for age are relevant to child development and healthy life. Changes in lean mass and fat mass as well as its distribution are associated with alterations in the secretion of myokines and adipokines by muscle and adipose tissues. These factors are very important for bone health. The aim of the study was to assess serum leptin, adiponectin, resistin, visfatin and omentin as adipokines and myostatin and irisin as myokines with regard to their associations with bone parameters in healthy normal weight and thin children. We studied 81 healthy prepubertal children (aged 5 to 9 years) divided into three groups: group A­35 children with a BMI z-score between +1 and −1 SD; group B­36 children with a BMI z-score between −1 and −2 SD; and group C­10 thin children with a BMI z-score of <−2 SD. We observed significantly (p < 0.001) lower fat mass, fat/lean mass ratio and bone mineral density (BMD) across weight status with the lowest values in the group of thin children. We noticed significantly (p < 0.05) lower concentrations of 25-hydroxyvitamin D, resistin and high-molecular-weight (HMW) adiponectin but higher levels of myostatin as the BMI z-score deceased. We found that BMI and leptin levels were directly correlated with fat mass, lean mass, bone mineral content (BMC) and BMD. Resistin levels were negatively associated with lean mass, while visfatin concentrations were positively related to total BMD. In healthy prepubertal children there were differences in body composition and in bone mineral density across decreasing BMI status. We suggest that changes in serum myostatin and 25-hydroxyvitamin D levels may play a role in bone status of thin children. Moreover, significant relations between adipokines and bone parameters may confirm crosstalk between fat tissue and bone in these children.

20.
IMA Fungus ; 13(1): 6, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468869

RESUMEN

Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA