Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Neuropharmacology ; 252: 109947, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631564

RESUMEN

A growing body of research indicates that ß-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.


Asunto(s)
Heroína , Sesquiterpenos Policíclicos , Autoadministración , Animales , Masculino , Heroína/administración & dosificación , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/administración & dosificación , Femenino , Ratones , Ratas , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Sesquiterpenos/farmacología , Sesquiterpenos/administración & dosificación , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga , Condicionamiento Operante/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Refuerzo en Psicología , Recompensa , Ratones Transgénicos , Nocicepción/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Int J Neuropsychopharmacol ; 26(12): 828-839, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37864842

RESUMEN

BACKGROUND: There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS: Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS: Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS: Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.


Asunto(s)
Hormona Liberadora de Corticotropina , Heroína , Ratas , Animales , Hormona Liberadora de Corticotropina/metabolismo , Heroína/farmacología , Heroína/metabolismo , Dopamina/metabolismo , Área Tegmental Ventral , Autoadministración , Recurrencia , ARN Mensajero/metabolismo
3.
Int J Neuropsychopharmacol ; 26(1): 80-90, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402549

RESUMEN

BACKGROUND: Reward-related learning, where animals form associations between rewards and stimuli (i.e., conditioned stimuli [CS]) that predict or accompany those rewards, is an essential adaptive function for survival. METHODS: In this study, we investigated the mechanisms underlying the acquisition and performance of conditioned approach learning with a focus on the role of muscarinic acetylcholine (mACh) and NMDA glutamate receptors in the substantia nigra (SN), a brain region implicated in reward and motor processes. RESULTS: Using RNAscope in situ hybridization assays, we found that dopamine neurons of the SN express muscarinic (mACh5), NMDA2a, NMDA2b, and NMDA2d receptor mRNA but not mACh4. NMDA, but not mACh5, receptor mRNA was also found on SN GABA neurons. In a conditioned approach paradigm, rats were exposed to 3 or 7 conditioning sessions during which light/tone (CS) presentations were paired with delivery of food pellets, followed by a test session with CS-only presentations. Intra-SN microinjections of scopolamine (a mACh receptor antagonist) or AP-5 (a NMDA receptor antagonist) were made either prior to each conditioning session (to test their effects on acquisition) or prior to the CS-only test (to test their effects on expression of the learned response). Scopolamine and AP-5 produced dose-dependent significant reductions in the acquisition, but not performance, of conditioned approach. CONCLUSIONS: These results suggest that SN mACh and NMDA receptors are key players in the acquisition, but not the expression, of reward-related learning. Importantly, these findings redefine the role of the SN, which has traditionally been known for its involvement in motor processes, and suggest that the SN possesses attributes consistent with a function as a hub of integration of primary reward and CS signals.


Asunto(s)
N-Metilaspartato , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Recompensa , Escopolamina/farmacología , Colinérgicos , Sustancia Negra/metabolismo
4.
Brain Behav ; 13(1): e2833, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573693

RESUMEN

INTRODUCTION: Several studies have linked inflammation and oxidative stress with the pathogenesis of depression. Artesunate is a commonly used medication to treat malaria and has been shown to produce antioxidant, anti-inflammatory, and immunomodulatory effects. However, its prophylactic effects on depression and depression-related brain pathology are unknown. METHODS: In Experiment 1, using a PC12 cell line, we investigated whether artesunate can prevent hydrogen peroxide (H2 O2 )-induced oxidative injury that mimics oxidative stress commonly observed in the depressed brain. Next, using lipopolysaccharide (LPS)-induced mouse model of depression, we investigated whether artesunate can prevent behavioral deficits observed in the open field test, novelty-suppressed feeding test, sucrose preference test, forced swimming test, and tail suspension procedure. RESULTS: We found that artesunate significantly prevented a H2 O2 -induced reduction in PC12 cell activity, suggesting its antioxidant potential. We also found that mice pretreated with artesunate (5, 15 mg/kg) intraperitoneally (i.p.) prior to the LPS (.8 mg/kg, i.p.) treatment showed fewer and less severe depression- and anxiety-like behaviors than the LPS-treated control mice. CONCLUSION: Our findings indicate that artesunate produces antioxidant effect, as well as antidepressant and anxiolytic effects. Importantly, our findings first demonstrate that artesunate can prevent LPS-induced depression- and anxiety-like symptoms, strongly suggesting its prophylactic potential in the treatment of depression and, perhaps, other psychiatric disorders associated with inflammation and oxidative stress.


Asunto(s)
Antimaláricos , Depresión , Ratones , Animales , Depresión/etiología , Artesunato/farmacología , Artesunato/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antioxidantes/farmacología , Lipopolisacáridos/farmacología , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Conducta Animal
5.
Pharmacol Res ; 185: 106476, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36182040

RESUMEN

A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.


Asunto(s)
Discinesias , Levodopa , Animales , Ratas , Ratones , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D1/agonistas , Dopamina , Receptores Acoplados a Proteínas G , Ligandos
6.
Sci Adv ; 8(35): eabo1440, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054363

RESUMEN

Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.

7.
Transl Psychiatry ; 12(1): 286, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851573

RESUMEN

Cannabinoid CB1 receptors (CB1Rs) have been major targets in medication development for the treatment of substance use disorders. However, clinical trials with rimonabant, a CB1R antagonist/inverse agonist, failed due to severe side effects. Here, we evaluated the therapeutic potential of PIMSR, a neutral CB1R antagonist lacking an inverse agonist profile, against cocaine's behavioral effects in experimental animals. We found that systemic administration of PIMSR dose-dependently inhibited cocaine self-administration under fixed-ratio (FR5), but not FR1, reinforcement, shifted the cocaine self-administration dose-response curve downward, decreased incentive motivation to seek cocaine under progressive-ratio reinforcement, and reduced cue-induced reinstatement of cocaine seeking. PIMSR also inhibited oral sucrose self-administration. Importantly, PIMSR alone is neither rewarding nor aversive as assessed by place conditioning. We then used intracranial self-stimulation (ICSS) to explore the possible involvement of the mesolimbic dopamine system in PIMSR's action. We found that PIMSR dose-dependently attenuated cocaine-enhanced ICSS maintained by electrical stimulation of the medial forebrain bundle in rats. PIMSR itself failed to alter electrical ICSS, but dose-dependently inhibited ICSS maintained by optical stimulation of midbrain dopamine neurons in transgenic DAT-Cre mice, suggesting the involvement of dopamine-dependent mechanisms. Lastly, we examined the CB1R mechanisms underlying PIMSR's action. We found that PIMSR pretreatment attenuated Δ9-tetrahydrocannabinol (Δ9-THC)- or ACEA (a selective CB1R agonist)-induced reduction in optical ICSS. Together, our findings suggest that the neutral CB1R antagonist PIMSR deserves further research as a promising pharmacotherapeutic for cocaine use disorder.


Asunto(s)
Cocaína , Trastornos Relacionados con Sustancias , Animales , Conducta Animal , Cocaína/farmacología , Condicionamiento Operante/fisiología , Dopamina , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Ratones , Ratas , Receptor Cannabinoide CB1 , Autoadministración
8.
Neuropsychopharmacology ; 47(13): 2309-2318, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35879349

RESUMEN

The non-medical use of opioids has become a national crisis in the USA. Developing non-opioid pharmacotherapies for controlling this opioid epidemic is urgent. Dopamine D3 receptor (D3R) antagonists and low efficacy partial agonists have shown promising profiles in animal models of opioid use disorders (OUD). However, to date, advancement to human studies has been limited. Here we report the effects of (S)- and (R)-enantiomers of (±)-ABS01-113, structural analogs of the D3R partial agonist, (±)-VK4-40, in which the 3-OH in the linking chain is replaced by 3-F group. (S)- and (R)-ABS01-113 are identical in chemical structure but with opposite chirality. In vitro receptor binding and functional assays indicate that (S)-ABS01-113 is an efficacious (55%) and potent (EC50 = 7.6 ± 3.9 nM) D3R partial agonist, while the (R)-enantiomer is a potent D3R antagonist (IC50 = 11.4 nM). Both (S)- and (R)-ABS01-113 bind with high affinity to D3R (Ki = 0.84 ± 0.16 and 0.37 ± 0.06 nM, respectively); however, the (S)-enantiomer is more D3/D2-selective (>1000-fold). Pharmacokinetic analyses indicate that both enantiomers display excellent oral bioavailability and high brain penetration. Systemic administration of (S)- or (R)-ABS01-113 alone failed to alter open-field locomotion in male rats and mice. Interestingly, pretreatment with (S)- or (R)-ABS01-113 attenuated heroin-enhanced hyperactivity, heroin self-administration, and (heroin + cue)-induced reinstatement of drug-seeking behavior. Together, these findings reveal that both enantiomers, particularly the highly selective and efficacious D3R partial agonist (S)-ABS01-113, demonstrate promising translational potential for the treatment of OUD.


Asunto(s)
Trastornos Relacionados con Opioides , Receptores de Dopamina D3 , Animales , Ratas , Masculino , Ratones , Humanos , Receptores de Dopamina D3/metabolismo , Heroína , Antagonistas de Dopamina/farmacología , Comportamiento de Búsqueda de Drogas , Analgésicos Opioides/farmacología , Agonistas de Dopamina/farmacología
9.
Brain Res Bull ; 185: 64-73, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35489671

RESUMEN

Reconsolidation of drug memories is the process of restoring unstable memories after unconditioned (UCS; e.g., drugs) or conditioned stimulus (CS; e.g., drug-paired contexts), and provides promise for prevention of drug relapse. Circular RNAs (circRNAs) have important effects on the transcription and post-transcriptional regulation of gene expression. However, the role of circRNAs in the reconsolidation of drug memories is unclear. Here, we observed that cocaine-induced memory retrieval significantly increased circTmeff-1 level in the nucleus accumbens (NAc) core but not shell. Importantly, the disrupted expression of circTmeff-1 using virus in the NAc core damaged the reconsolidation of cocaine-associated memories. The knockdown of circTmeff-1 in the NAc shell or without UCS retrieval or 9 h after UCS retrieval had no such effects. Mechanistically, using bioinformatic analysis and loss- or gain- of function assays, we revealed that antagomiR-206 reversed the inhibitory effect of circTmeff-1 knockdown on the expression of brain-derived neurotrophic factor (BDNF) during the reconsolidation of cocaine-associated memories. Taken together, these results demonstrate the role of circTmeff-1 in the reconsolidation of cocaine-associated memory and that circTmeff-1 may function as a decoy for miR-206 to regulate the expression of BDNF.


Asunto(s)
Cocaína , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cocaína/farmacología , Núcleo Accumbens , ARN Circular , Ratas , Ratas Sprague-Dawley
10.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064236

RESUMEN

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Asunto(s)
Ghrelina , Receptores de Ghrelina , Animales , Animales Modificados Genéticamente , Ghrelina/farmacología , Ratones , Oxicodona , Ratas , Ratas Long-Evans , Ratas Wistar
11.
Neuropsychopharmacology ; 47(8): 1449-1460, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34923576

RESUMEN

Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic ß1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Adrenérgicos/farmacología , Adrenérgicos/uso terapéutico , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Ghrelina , Ratones , Ratas , Ratas Sprague-Dawley , Receptores de Ghrelina/uso terapéutico , Autoadministración , Área Tegmental Ventral
12.
Front Pharmacol ; 12: 757417, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867375

RESUMEN

Carbon monoxide (CO), a byproduct of heme catalyzed by heme oxygenase (HO), has been reported to exert antioxidant and anti-inflammatory actions, and to produce significant neuroprotective effects. The potential effects of CO and even HO on depressive-like behaviors are still poorly understood. Utilizing several approaches including adeno-associated virus (AAV)-mediated overexpression of HO-1, systemic CO-releasing molecules (CO-RMs), CO-rich saline or CO gas treatment procedures in combination with hydrogen peroxide (H2O2)-induced PC12 cell injury model, and lipopolysaccharide (LPS)-induced depression mouse model, the present study aimed to investigate the potential antidepressant- and anxiolytic-like effects of endogenous and exogenous CO administration in vivo and in vitro. The results of in vitro experiments showed that both CO-RM-3 and CO-RM-A1 pretreatment blocked H2O2-induced cellular injuries by increasing cell survival and decreasing cell apoptosis and necrosis. Similar to the effects of CO-RM-3 and CO-RM-A1 pretreatment, AAV-mediated HO-1 overexpression in the dorsal hippocampus produced significant antidepressant-like activities in mice under normal conditions. Further investigation showed that the CO gas treatment significantly blocked LPS-induced depressive- and anxiety-like behaviors in mice. Taken together, our results suggest that the activation of HO-1 and/or exogenous CO administration produces protective effects and exerts antidepressant- and anxiolytic-like effects. These data uncover a novel function of the HO-1/CO system that appears to be a promising therapeutic target for the treatment of depression and anxiety.

13.
Front Pharmacol ; 12: 722476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566647

RESUMEN

Recent research indicates that brain cannabinoid CB2 receptors are involved in drug reward and addiction. However, it is unclear whether ß-caryophyllene (BCP), a natural product with a CB2 receptor agonist profile, has therapeutic effects on methamphetamine (METH) abuse and dependence. In this study, we used animal models of self-administration, electrical brain-stimulation reward (BSR) and in vivo microdialysis to explore the effects of BCP on METH-taking and METH-seeking behavior. We found that systemic administration of BCP dose-dependently inhibited METH self-administration under both fixed-ratio and progressive-ratio reinforcement schedules in rats, indicating that BCP reduces METH reward, METH intake, and incentive motivation to seek and take METH. The attenuating effects of BCP were partially blocked by AM 630, a selective CB2 receptor antagonist. Genetic deletion of CB2 receptors in CB2-knockout (CB2-KO) mice also blocked low dose BCP-induced reduction in METH self-administration, suggesting possible involvement of a CB2 receptor mechanism. However, at high doses, BCP produced a reduction in METH self-administration in CB2-KO mice in a manner similar as in WT mice, suggesting that non-CB2 receptor mechanisms underlie high dose BCP-produced effects. In addition, BCP dose-dependently attenuated METH-enhanced electrical BSR and inhibited METH-primed and cue-induced reinstatement of drug-seeking in rats. In vivo microdialysis assays indicated that BCP alone did not produce a significant reduction in extracellular dopamine (DA) in the nucleus accumbens (NAc), while BCP pretreatment significantly reduced METH-induced increases in extracellular NAc DA in a dose-dependent manner, suggesting a DA-dependent mechanism involved in BCP action. Together, the present findings suggest that BCP might be a promising therapeutic candidate for the treatment of METH use disorder.

14.
Front Pharmacol ; 12: 686845, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113256

RESUMEN

Persistent traces of drug reward memories contribute to intense craving and often trigger relapse. A number of pharmacological interventions on drug-associated memories have shown significant benefits in relapse prevention at a preclinical level but their translational potential is limited due to deleterious side effects. Propranolol, a non-specific ß-adrenergic receptors antagonist, is known for its ability to erase maladaptive memories associated with nicotine or cocaine in rodents and humans. However, little is known about its effect on reconsolidation of heroin memory and heroin seeking. In the present study, rats with a history of intravenous heroin self-administration received the propranolol treatment (10 mg/kg; i.p.) at different time windows with or without CS (conditioned stimulus) exposure. Our results showed that propranolol, when administered immediately after CS exposure but not 6 h later, can significantly attenuate cue-induced and drug-primed reinstatement of heroin seeking, suggesting that propranolol has the ability to disrupt heroin memory and reduce relapse. The propranolol treatment without retrieval of drug memory had no effect on subsequent reinstatement of heroin seeking, suggesting that its interfering effects are retrieval-dependent. Importantly, the effects of propranolol were long lasting as rats showed diminished drug seeking even 28 days after the treatment. Altogether, our study suggests that propranolol can interfere with reconsolidation of heroin memory and reduce subsequent drug seeking, making it an attractive therapeutic candidate for the treatment of opioid addiction and relapse prevention.

15.
Pharmacol Res ; 170: 105722, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34116208

RESUMEN

A progressive increase in drug craving following drug exposure is an important trigger of relapse. CircularRNAs (CircRNAs), key regulators of gene expression, play an important role in neurological diseases. However, the role of circRNAs in drug craving is unclear. In the present study, we trained mice to morphine conditioned place preference (CPP) and collected the nucleus accumbens (NAc) sections on abstinence day 1 (AD1) and day 14 (AD14) for RNA-sequencing. CircTmeff-1, which was highly expressed in the NAc core, was associated with incubation of context-induced morphine craving. The gain- and loss- of function showed that circTmeff-1 was a positive regulator of incubation. Simultaneously, the expression of miR-541-5p and miR-6934-3p were down-regulated in the NAc core during the incubation period. The dual luciferase reporter, RNA pulldown, and fluorescence insitu hybridization assays confirmed that miR-541-5p and miR-6934-3p bind to circTmeff-1 selectively. Furthermore, bioinformatics and western blot analysis suggested that vesicle-associated membrane protein 1 (VAMP1) and neurofascin (NFASC), both overlapping targets of miR-541-5p and miR-6934-3p, were highly expressed during incubation. Lastly, AAV-induced down-regulation of circTmeff-1 decreased VAMP1 and NFASC expression and incubation of morphine craving. These findings suggested that circTmeff-1, a novel circRNA, promotes incubation of context-induced morphine craving by sponging miR-541/miR-6934 in the NAc core. Thus, circTmeff-1 represents a potential therapeutic target for context-induced opioid craving, following prolonged abstinence.


Asunto(s)
Conducta Animal , Ansia , Comportamiento de Búsqueda de Drogas , Dependencia de Morfina/metabolismo , Núcleo Accumbens/metabolismo , ARN Circular/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Señales (Psicología) , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Dependencia de Morfina/genética , Dependencia de Morfina/fisiopatología , Dependencia de Morfina/psicología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Núcleo Accumbens/fisiopatología , ARN Circular/genética , Proteína 1 de Membrana Asociada a Vesículas/genética , Proteína 1 de Membrana Asociada a Vesículas/metabolismo
16.
Addict Biol ; 26(5): e13037, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33768673

RESUMEN

The neuropeptide galanin is reported to attenuate opioid withdrawal symptoms, potentially by reducing neuronal hyperactivity in the noradrenergic locus coeruleus (LC) via galanin receptor 1 (GalR1). We evaluated this mechanism by using RNAscope in situ hybridization to characterize GalR1 mRNA distribution in the dorsal pons and to compare galanin and GalR1 mRNA expression in tyrosine hydroxylase-positive (TH+) LC cells at baseline and following chronic morphine or precipitated withdrawal. We then used genetically altered mouse lines and pharmacology to test whether noradrenergic galanin (NE-Gal) modulates withdrawal symptoms. RNAscope revealed that, while GalR1 signal was evident in the dorsal pons, 80.7% of the signal was attributable to TH- neurons outside the LC. Galanin and TH mRNA were abundant in LC cells at baseline and were further increased by withdrawal, whereas low basal GalR1 mRNA expression was unaltered by chronic morphine or withdrawal. Naloxone-precipitated withdrawal symptoms in mice lacking NE-Gal (GalcKO-Dbh ) were largely similar to WT littermates, indicating that loss of NE-Gal does not exacerbate withdrawal. Complementary experiments using NE-Gal overexpressor mice (NE-Gal OX) and systemic administration of the galanin receptor agonist galnon revealed that increasing galanin signaling also failed to alter behavioral withdrawal, while suppressing noradrenergic transmission with the alpha-2 adrenergic receptor agonist clonidine attenuated multiple symptoms. These results indicate that galanin does not acutely attenuate precipitated opioid withdrawal via an LC-specific mechanism, which has important implications for the general role of galanin in regulation of somatic and affective opioid responses and LC activity.


Asunto(s)
Galanina/farmacología , Locus Coeruleus/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Analgésicos Opioides/farmacología , Animales , Encéfalo/efectos de los fármacos , Femenino , Hibridación in Situ , Masculino , Ratones , Morfina/farmacología , Naloxona/farmacología , Narcóticos/farmacología , Neuronas/metabolismo , Neuropéptidos/farmacología , Norepinefrina/metabolismo , Trastornos Relacionados con Opioides/tratamiento farmacológico , ARN Mensajero/metabolismo , Receptores de Galanina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
17.
Neurosci Biobehav Rev ; 124: 224-234, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581225

RESUMEN

A major goal in psychology is to understand how environmental stimuli associated with primary rewards come to function as conditioned stimuli, acquiring the capacity to elicit similar responses to those elicited by primary rewards. Our neurobiological model is predicated on the Hebbian idea that concurrent synaptic activity on the primary reward neural substrate-proposed to be ventral tegmental area (VTA) dopamine (DA) neurons-strengthens the synapses involved. We propose that VTA DA neurons receive both a strong unconditioned stimulus signal (acetylcholine stimulation of DA cells) from the primary reward capable of unconditionally activating DA cells and a weak stimulus signal (glutamate stimulation of DA cells) from the neutral stimulus. Through joint stimulation the weak signal is potentiated and capable of activating the VTA DA cells, eliciting a conditioned response. The learning occurs when this joint stimulation initiates intracellular second-messenger cascades resulting in enhanced glutamate-DA synapses. In this review we present evidence that led us to propose this model and the most recent evidence supporting it.


Asunto(s)
Recompensa , Área Tegmental Ventral , Condicionamiento Clásico , Neuronas Dopaminérgicas , Aprendizaje
18.
Addict Biol ; 26(4): e13005, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33538103

RESUMEN

Despite extensive research, the rewarding effects of cannabinoids are still debated. Here, we used a newly established animal procedure called optogenetic intracranial self-stimulation (ICSS) (oICSS) to re-examine the abuse potential of cannabinoids in mice. A specific adeno-associated viral vector carrying a channelrhodopsin gene was microinjected into the ventral tegmental area (VTA) to express light-sensitive channelrhodopsin in dopamine (DA) neurons of transgenic dopamine transporter (DAT)-Cre mice. Optogenetic stimulation of VTA DA neurons was highly reinforcing and produced a classical "sigmoidal"-shaped stimulation-response curve dependent upon the laser pulse frequency. Systemic administration of cocaine dose-dependently enhanced oICSS and shifted stimulation-response curves upward, in a way similar to previously observed effects of cocaine on electrical ICSS. In contrast, Δ9 -tetrahydrocannabinol (Δ9 -THC), but not cannabidiol, dose-dependently decreased oICSS responding and shifted oICSS curves downward. WIN55,212-2 and ACEA, two synthetic cannabinoids often used in laboratory settings, also produced dose-dependent reductions in oICSS. We then examined several new synthetic cannabinoids, which are used recreationally. XLR-11 produced a cocaine-like increase, AM-2201 produced a Δ9 -THC-like reduction, while 5F-AMB had no effect on oICSS responding. Immunohistochemistry and RNAscope in situ hybridization assays indicated that CB1 Rs are expressed mainly in VTA GABA and glutamate neurons, while CB2 Rs are expressed mainly in VTA DA neurons. Together, these findings suggest that most cannabinoids are not reward enhancing, but rather reward attenuating or aversive in mice. Activation of CB1 R and/or CB2 R in different populations of neurons in the brain may underlie the observed actions.


Asunto(s)
Cannabinoides/efectos adversos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Optogenética/métodos , Animales , Conducta Animal , Cocaína/farmacología , Neuronas Dopaminérgicas , Dronabinol/farmacología , Integrasas , Masculino , Ratones , Ratones Transgénicos , Recompensa , Autoestimulación/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
19.
Eur J Pharmacol ; 896: 173911, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33503460

RESUMEN

Substance-related and addictive disorders (SRADs) are characterized by compulsive drug use and recurrent relapse. The persistence of pathological drug-related memories indisputably contributes to a high propensity to relapse. Hence, strategies to disrupt reconsolidation of drug reward memory are currently being pursued as potential anti-relapse interventions. Sulfur dioxide (SO2), acting as a potential gaseous molecule, endogenously derives from sulfur amino acid and can exert significant neural regulatory effects. However, the role of SO2 in reconsolidation of drug memory has not been determined. In the present study, we used morphine- or cocaine-induced conditioned place preference (CPP) mouse models with retrieval to investigate the effects of exogenous SO2 donor treatment on reconsolidation of drug reward memory. We found that administration of SO2 donor immediately after the retrieval impaired the expression of morphine or cocaine CPP. Furthermore, the exogenous SO2 donor treatment 6 h post-retrieval or in the absence of retrieval had no effect on drug reward memory and the expression of CPP. SO2 itself did not produce aversive effects nor did it acutely block morphine CPP. Our results indicate that exogenous SO2 impairs reconsolidation of drug reward memory rather than inhibits the expression of drug reward memory. As such, SO2 holds potential for the treatment and prevention of SRADs and should be studied further.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Consolidación de la Memoria/efectos de los fármacos , Morfina/farmacología , Recompensa , Sulfitos/farmacología , Dióxido de Azufre/farmacología , Animales , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Cocaína/psicología , Condicionamiento Clásico/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Dependencia de Morfina/tratamiento farmacológico , Dependencia de Morfina/psicología , Factores de Tiempo
20.
Neuropsychopharmacology ; 46(4): 860-870, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33069159

RESUMEN

Cocaine abuse continues to be a serious health problem worldwide. Despite intense research, there is still no FDA-approved medication to treat cocaine use disorder (CUD). In this report, we explored the potential utility of beta-caryophyllene (BCP), an FDA-approved food additive for the treatment of CUD. We found that BCP, when administered intraperitoneally or intragastrically, dose-dependently attenuated cocaine self-administration, cocaine-conditioned place preference, and cocaine-primed reinstatement of drug seeking in rats. In contrast, BCP failed to alter food self-administration or cocaine-induced hyperactivity. It also failed to maintain self-administration in a drug substitution test, suggesting that BCP has no abuse potential. BCP was previously reported to be a selective CB2 receptor agonist. Unexpectedly, pharmacological blockade or genetic deletion of CB1, CB2, or GPR55 receptors in gene-knockout mice failed to alter BCP's action against cocaine self-administration, suggesting the involvement of non-CB1, non-CB2, and non-GPR55 receptor mechanisms. Furthermore, pharmacological blockade of µ opioid receptor or Toll-like receptors complex failed to alter, while blockade of peroxisome proliferator-activated receptors (PPARα, PPARγ) reversed BCP-induced reduction in cocaine self-administration, suggesting the involvement of PPARα and PPARγ in BCP's action. Finally, we used electrical and optogenetic intracranial self-stimulation (eICSS, oICSS) paradigms to study the underlying neural substrate mechanisms. We found that BCP is more effective in attenuation of cocaine-enhanced oICSS than eICSS, the former driven by optical activation of midbrain dopamine neurons in DAT-cre mice. These findings indicate that BCP may be useful for the treatment of CUD, likely by stimulation of PPARα and PPARγ in the mesolimbic system.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Conducta Animal , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Reposicionamiento de Medicamentos , Aditivos Alimentarios/uso terapéutico , Ratones , PPAR alfa/uso terapéutico , PPAR gamma , Sesquiterpenos Policíclicos , Ratas , Receptores de Cannabinoides , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA