Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 182: 207-214, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670004

RESUMEN

The objective of this paper is to evaluate the feasibility of co-processing wind turbine blade (WTB) material in cement manufacturing to provide an end-of-life means to divert the solid waste of decommissioned WTBs from landfills. Many WTBs consist primarily of glass fiber reinforced thermoset polymers that are difficult to recover or recycle. Portland cement is produced world-wide in large quantities, requiring immense quantities of raw materials (mostly calcium oxide and silicon oxide) and kiln temperatures approaching 1,450 °C. This work contributes analyses of WTB material composition, and predicts the energy provided through the combustible components of the WTBs and raw material contributions provided by incorporating the incombustible components of the WTBs to produce cement. Approximately 40 to 50 % of the WTB material will contribute as fuel to cement production, and approximately 50 to 60 % of the WTB material is expected to be incombustible. One tonne of WTB material can displace approximately 0.4 to 0.5 tonne of coal, while also contributing approximately 0.1 tonne of calcium oxide and 0.3 tonne of silicon oxide as raw material to the cement production process. The glass fiber WTB tested had an average boron content of 4.5 % in the ash. The effects of this high boron content on the cement and its production process should be evaluated. Co-processing WTBs in cement plants will slightly reduce combustion-related CO2 emissions due to avoided calcination. It seems feasible to co-process glass-fiber reinforced WTBs in cement production as WTBs provide suitable raw materials and compatible fuel for this process.


Asunto(s)
Materiales de Construcción , Materiales de Construcción/análisis , Reciclaje/métodos , Viento , Compuestos de Calcio/química , Administración de Residuos/métodos , Residuos Sólidos/análisis , Vidrio , Óxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA