Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692017

RESUMEN

The expression of indoleamine 2,3-dioxygenase (IDO), a robust immunosuppressant, is significantly induced in macaque tuberculosis (TB) granulomas, where it is expressed on IFN-responsive macrophages and myeloid-derived suppressor cells. IDO expression is also highly induced in human TB granulomas, and products of its activity are detected in patients with TB. In vivo blockade of IDO activity resulted in the reorganization of the granuloma with substantially greater T cells being recruited to the core of the lesions. This correlated with better immune control of TB and reduced lung M. tuberculosis burdens. To study if the IDO blockade strategy can be translated to a bona fide host-directed therapy in the clinical setting of TB, we studied the effect of IDO inhibitor 1-methyl-d-tryptophan adjunctive to suboptimal anti-TB chemotherapy. While two-thirds of controls and one-third of chemotherapy-treated animals progressed to active TB, inhibition of IDO adjunctive to the same therapy protected macaques from TB, as measured by clinical, radiological, and microbiological attributes. Although chemotherapy improved proliferative T cell responses, adjunctive inhibition of IDO further enhanced the recruitment of effector T cells to the lung. These results strongly suggest the possibility that IDO inhibition can be attempted adjunctive to anti-TB chemotherapy in clinical trials.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Animales , Humanos , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenasa , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo
2.
J Clin Invest ; 132(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35862216

RESUMEN

A once-weekly oral dose of isoniazid and rifapentine for 3 months (3HP) is recommended by the CDC for treatment of latent tuberculosis infection (LTBI). The aim of this study is to assess 3HP-mediated clearance of M. tuberculosis bacteria in macaques with asymptomatic LTBI. Twelve Indian-origin rhesus macaques were infected with a low dose (~10 CFU) of M. tuberculosis CDC1551 via aerosol. Six animals were treated with 3HP and 6 were left untreated. The animals were imaged via PET/CT at frequent intervals. Upon treatment completion, all animals except 1 were coinfected with SIV to assess reactivation of LTBI to active tuberculosis (ATB). Four of 6 treated macaques showed no evidence of persistent bacilli or extrapulmonary spread until the study end point. PET/CT demonstrated the presence of significantly more granulomas in untreated animals relative to the treated group. The untreated animals harbored persistent bacilli and demonstrated tuberculosis (TB) reactivation following SIV coinfection, while none of the treated animals reactivated to ATB. 3HP treatment effectively reduced persistent infection with M. tuberculosis and prevented reactivation of TB in latently infected macaques.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Isoniazida/farmacología , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/microbiología , Pulmón , Macaca mulatta , Tomografía Computarizada por Tomografía de Emisión de Positrones , Rifampin/análogos & derivados
3.
Methods Mol Biol ; 2452: 227-258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35554911

RESUMEN

With the advent of the novel SARS-CoV-2, the entire world has been thrown into chaos with severe disruptions from a normal life. While the entire world was going chaotic, the researchers throughout the world were struggling to contribute to the best of their capabilities to advance the understanding of this new pandemic and fast track the development of novel therapeutics and vaccines. While various animal models have helped a lot to understand the basic physiology, nonhman primates have been promising and much more successful in modelling human diseases compared to other available clinical models. Here we describe the different aspects of modelling the SARS-CoV-2 infection in NHPs along with the associated methods used in NHP immunology.


Asunto(s)
COVID-19 , Animales , Modelos Animales de Enfermedad , Pandemias , Primates , SARS-CoV-2
4.
Trends Mol Med ; 28(2): 123-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34955425

RESUMEN

Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Primates
5.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855621

RESUMEN

Studies using the nonhuman primate model of Mycobacterium tuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell-independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.


Asunto(s)
Antirretrovirales/farmacología , Coinfección , Tuberculosis Latente/metabolismo , Mycobacterium tuberculosis/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/metabolismo , Animales , Coinfección/tratamiento farmacológico , Coinfección/metabolismo , Coinfección/microbiología , Coinfección/virología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología
6.
mBio ; 12(6): e0318921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903057

RESUMEN

Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell population comprised of immature myeloid cells and myeloid progenitors with very potent immunosuppressive potential. MDSCs are reported to be abundant in the lungs of active tuberculosis (TB) patients. We sought to perform an in-depth study of MDSCs during latent TB infection (LTBI) and active TB (ATB) using the nonhuman primate (NHP) model of pulmonary TB. We found a higher proportion of granulocytic, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the lungs of ATB animals compared to those with LTBI or naive control animals. Active disease in the lung, but not LTBI, was furthermore associated with higher proliferation, expansion, and immunosuppressive capabilities of PMN-MDSCs, as shown by enhanced expression of Ki67, indoleamine 2,3-dioxygenase (IDO1), interleukin-10 (IL-10), matrix metallopeptidase 9 (MMP-9), inducible nitric oxide synthase (iNOS), and programmed death-ligand 1 (PD-L1). These immunosuppressive PMN-MDSCs specifically localized to the lymphocytic cuff at the periphery of the granulomas in animals with ATB. Conversely, these cells were scarcely distributed in interstitial lung tissue and the inner core of granulomas. This spatial regulation suggests an important immunomodulatory role of PMN-MDSCs by restricting T cell access to the TB granuloma core and can potentially explain dysfunctional anti-TB responses in active granuloma. Our results raise the possibility that the presence of MDSCs can serve as a biomarker for ATB, while their disappearance can indicate successful therapy. Furthermore, MDSCs may serve as a potential target cell for adjunctive TB therapy. IMPORTANCE Myeloid cells are immunocytes of innate origin that orchestrate the first response toward pathogens via immune surveillance (uptake and killing), antigen presentation, and initiation of adaptive immunity by T cell stimulation. However, MDSCs are a subset of innate immunocytes that deviate to an immunoregulatory phenotype. MDSCs possess strong immunosuppressive capabilities that are induced in autoimmune, malignant neoplastic, and chronic inflammatory diseases. Induction of MDSCs has been found in peripheral blood, bronchoalveolar lavage (BAL) fluid, and pleural effusions of active TB patients, but their precise localization in lung tissue and in TB granulomas remains unclear due to challenges associated with sampling lungs and granulomas from active TB patients. Nonhuman primates (NHPs) are an important animal model with TB granulomas that closely mimic those found in humans and can therefore be used for studies that are otherwise challenging with patient material. Herein, we study MDSC localization in the lungs of NHPs exhibiting latent and active TB. Our findings reveal that MDSCs localize and exert their immunosuppressive roles at the periphery rather than in the core of TB granulomas.


Asunto(s)
Granuloma/inmunología , Tuberculosis Latente/inmunología , Células Supresoras de Origen Mieloide/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Modelos Animales de Enfermedad , Femenino , Granuloma/microbiología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Tuberculosis Latente/genética , Tuberculosis Latente/microbiología , Macaca mulatta , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Mycobacterium tuberculosis/fisiología , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología
7.
Mol Brain ; 14(1): 99, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183051

RESUMEN

Activation of spinal cord microglia contributes to the development of peripheral nerve injury-induced neuropathic pain. However, the molecular mechanisms underlying microglial function in neuropathic pain are not fully understood. We identified that the voltage-gated proton channel Hv1, which is functionally expressed in spinal microglia, was significantly increased after spinal nerve transection (SNT). Hv1 mediated voltage-gated proton currents in spinal microglia and mice lacking Hv1 (Hv1 KO) display attenuated pain hypersensitivities after SNT compared with wildtype (WT) mice. In addition, microglial production of reactive oxygen species (ROS) and subsequent astrocyte activation in the spinal cord was reduced in Hv1 KO mice after SNT. Cytokine screening and immunostaining further revealed that IFN-γ expression was compromised in spinal astrocytes in Hv1 KO mice. These results demonstrate that Hv1 proton channel contributes to microglial ROS production, astrocyte activation, IFN-γ upregulation, and subsequent pain hypersensitivities after SNT. This study suggests Hv1-dependent microglia-astrocyte communication in pain hypersensitivities and identifies Hv1 as a novel therapeutic target for alleviating neuropathic pain.


Asunto(s)
Astrocitos/patología , Comunicación Celular , Canales Iónicos/metabolismo , Microglía/patología , Neuralgia/etiología , Neuralgia/patología , Traumatismos de los Nervios Periféricos/complicaciones , Animales , Astrocitos/metabolismo , Proliferación Celular , Activación Enzimática , Interferón gamma/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/patología , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645551

RESUMEN

Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.


Asunto(s)
Imagen Molecular , Mycobacterium tuberculosis/metabolismo , Tuberculosis/diagnóstico por imagen , Tuberculosis/metabolismo , Animales , Biomarcadores/metabolismo , Humanos
10.
Nat Microbiol ; 6(1): 73-86, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340034

RESUMEN

Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.


Asunto(s)
COVID-19/veterinaria , Callithrix/inmunología , Pulmón/inmunología , Macaca mulatta/inmunología , Enfermedades de los Monos/virología , Papio/inmunología , SARS-CoV-2/inmunología , Inmunidad Adaptativa , Animales , Anticuerpos Antivirales/inmunología , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , COVID-19/diagnóstico por imagen , COVID-19/inmunología , COVID-19/patología , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunoglobulina G/inmunología , Inflamación/patología , Pulmón/virología , Masculino , Enfermedades de los Monos/inmunología , Células Mieloides/inmunología , Carga Viral , Esparcimiento de Virus
12.
JCI Insight ; 5(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32554933

RESUMEN

Mycobacterium tuberculosis-specific (M. tuberculosis-specific) T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a nonhuman primate aerosol model, we studied the kinetics, phenotypes, and functions of M. tuberculosis antigen-specific T cells in peripheral and lung compartments of M. tuberculosis-infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage, for up to 24 weeks postinfection. We found substantially higher frequencies of M. tuberculosis-specific effector and memory CD4+ and CD8+ T cells producing IFN-γ in the airways compared with peripheral blood, and these frequencies were maintained throughout the study period. Moreover, M. tuberculosis-specific IL-17+ and IL-17+IFN-γ+ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of M. tuberculosis-specific CD4+ T cells that homed to the airways expressed the chemokine receptor CXCR3 and coexpressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and nongranulomatous regions of the lung and inversely correlated with M. tuberculosis burden. Our findings provide insights into antigen-specific T cell responses associated with asymptomatic M. tuberculosis infection that are relevant for developing better strategies to control TB.


Asunto(s)
Tuberculosis Latente/genética , Pulmón/inmunología , Receptores CCR6/genética , Receptores CXCR3/genética , Tuberculosis Pulmonar/genética , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Pulmón/microbiología , Pulmón/patología , Macaca mulatta , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Células TH1/inmunología , Células TH1/microbiología , Células Th17/inmunología , Células Th17/microbiología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
13.
J Clin Invest ; 130(10): 5171-5179, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32544085

RESUMEN

While the advent of combination antiretroviral therapy (ART) has significantly improved survival, tuberculosis (TB) remains the leading cause of death in the HIV-infected population. We used Mycobacterium tuberculosis/simian immunodeficiency virus-coinfected (M. tuberculosis/SIV-coinfected) macaques to model M. tuberculosis/HIV coinfection and study the impact of ART on TB reactivation due to HIV infection. Although ART significantly reduced viral loads and increased CD4+ T cell counts in blood and bronchoalveolar lavage (BAL) samples, it did not reduce the relative risk of SIV-induced TB reactivation in ART-treated macaques in the early phase of treatment. CD4+ T cells were poorly restored specifically in the lung interstitium, despite their significant restoration in the alveolar compartment of the lung as well as in the periphery. IDO1 induction in myeloid cells in the inducible bronchus-associated lymphoid tissue (iBALT) likely contributed to dysregulated T cell homing and impaired lung immunity. Thus, although ART was indispensable for controlling viral replication, restoring CD4+ T cells, and preventing opportunistic infection, it appeared inadequate in reversing the clinical signs of TB reactivation during the relatively short duration of ART administered in this study. This finding warrants the modeling of concurrent treatment of TB and HIV to potentially reduce the risk of reactivation of TB due to HIV to inform treatment strategies in patients with M. tuberculosis/HIV coinfection.


Asunto(s)
Antirretrovirales/uso terapéutico , Coinfección/tratamiento farmacológico , Tuberculosis Latente/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Animales , Fármacos Anti-VIH/uso terapéutico , Terapia Antirretroviral Altamente Activa , Carga Bacteriana , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios , Carga Viral/efectos de los fármacos
14.
Trends Microbiol ; 28(8): 619-632, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32417227

RESUMEN

HIV co-infection is the most critical risk factor for the reactivation of latent tuberculosis (TB) infection (LTBI). While CD4+ T cell depletion has been considered the major cause of HIV-induced reactivation of LTBI, recent work in macaques co-infected with Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) suggests that cytopathic effects of SIV resulting in chronic immune activation and dysregulation of T cell homeostasis correlate with reactivation of LTBI. This review builds on compelling data that the reactivation of LTBI during HIV co-infection is likely to be driven by the events of HIV replication and therefore highlights the need to have optimum translational interventions directed at reactivation due to co-infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Coinfección/inmunología , Modelos Animales de Enfermedad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Humanos , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Depleción Linfocítica , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/patología
15.
Artículo en Inglés | MEDLINE | ID: mdl-31383662

RESUMEN

Central nervous system tuberculosis (TB) is devastating and affects vulnerable populations. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculous meningitis (TBM) specifically are nearly uniformly fatal, with little information being available to guide the treatment of these patients. Delamanid (DLM), a nitro-dihydro-imidazooxazole, is a new, well-tolerated anti-TB drug with a low MIC (1 to 12 ng/ml) against Mycobacterium tuberculosis It is used for the treatment of pulmonary MDR-TB, but pharmacokinetic (PK) data for DLM in the central nervous system (CNS) of patients with TBM are not available. In the present study, we measured DLM concentrations in the brain and cerebrospinal fluid (CSF) of six rabbits with and without experimentally induced TBM receiving single-dose DLM. We report the steady-state CSF concentrations from three patients receiving DLM as part of multidrug treatment who underwent therapeutic drug monitoring. Drug was quantified using liquid chromatography-tandem mass spectrometry. In rabbits and humans, mean concentrations in CSF (in rabbits, 1.26 ng/ml at 9 h and 0.47 ng/ml at 24 h; in humans, 48 ng/ml at 4 h) were significantly lower than those in plasma (in rabbits, 124 ng/ml at 9 h and 14.5 ng/ml at 24 h; in humans, 726 ng/ml at 4 h), but the estimated free CSF/plasma ratios were generally >1. In rabbits, DLM concentrations in the brain were 5-fold higher than those in plasma (means, 518 ng/ml at 9 h and 74.0 ng/ml at 24 h). All patients with XDR-TBM receiving DLM experienced clinical improvement and survival. Collectively, these results suggest that DLM achieves adequate concentrations in brain tissue. Despite relatively low total CSF drug levels, free drug may be sufficient and DLM may have a role in treating TBM. More studies are needed to develop a fuller understanding of its distribution over time with treatment and clinical effectiveness.


Asunto(s)
Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Sistema Nervioso Central/metabolismo , Nitroimidazoles/farmacocinética , Oxazoles/farmacocinética , Tuberculosis Meníngea/tratamiento farmacológico , Animales , Femenino , Humanos , Masculino , Mycobacterium tuberculosis/efectos de los fármacos , Conejos , Resultado del Tratamiento , Tuberculosis Meníngea/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo
16.
Int J Infect Dis ; 83: 72-76, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30953827

RESUMEN

The World Health Organization launched a global initiative, known as aDSM (active TB drug safety monitoring and management) to better describe the safety profile of new treatment regimens for drug-resistant tuberculosis (TB) in real-world settings. However, comprehensive surveillance is difficult to implement in several countries. The aim of the aDSM project is to demonstrate the feasibility of implementing national aDSM registers and to describe the type and the frequency of adverse events (AEs) associated with exposure to the new anti-TB drugs. Following a pilot study carried out in 2016, official involvement of TB reference centres/countries into the project was sought and cases treated with bedaquiline- and/or delamanid-containing regimens were consecutively recruited. AEs were prospectively collected ensuring potential attribution of the AE to a specific drug based on its known safety profile. A total of 309 cases were fully reported from 41 centres in 27 countries (65% males; 268 treated with bedaquiline, 20 with delamanid, and 21 with both drugs) out of an estimated 781 cases the participating countries had committed to report by the first quarter of 2019.


Asunto(s)
Antituberculosos/efectos adversos , Diarilquinolinas/efectos adversos , Nitroimidazoles/efectos adversos , Oxazoles/efectos adversos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Diarilquinolinas/administración & dosificación , Quimioterapia Combinada , Estudios de Factibilidad , Femenino , Humanos , Masculino , Nitroimidazoles/administración & dosificación , Oxazoles/administración & dosificación , Proyectos Piloto , Tuberculosis/tratamiento farmacológico , Organización Mundial de la Salud
17.
Indian J Tuberc ; 66(1): 87-91, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30797290

RESUMEN

BACKGROUND: Private healthcare is choice of point of care for 70% of Indians. Multidrug resistant tuberculosis (MDR-TB) treatment is costly and involves duration as long as 2 years. AIM: To estimate costs to patients undergoing treatment for MDR-TB. METHODS: A health-economics questionnaire was administered to 50 consecutive patients who successfully completed ambulatory private treatment for MDR-TB. Direct costs included drug costs, investigations, consultation fees, travel costs, hospitalisation and invasive procedures and cost prior to presentation to us. Indirect costs included loss of income. RESULTS: Of our cohort of 50 patients, 36 had pulmonary TB while 14 had extra-pulmonary TB (EPTB). 40 had MDR-TB and 10 had XDR-TB. There were 15 males and 35 females. Mean age was 30 years (range 16-61 years). Treatment cost for pulmonary MDR-TB averaged $5723 while it averaged $8401 for pulmonary XDR-TB and $5609 for EPTB. The major expense was due to drug costs (37%) while consultation fees were only 5%. Annual individual income for the cohort ranged from $0 to $63,000 (mean $11,430). On average, the cost of treatment ranged from 2.56% to 180.34% of the annual family income. 34/50 (68%) had total costs greater than 20% of annual family income and 39/50 (78%) had total costs greater than 10% of annual family income. The number of patients with total costs >40% of total family income was 22. CONCLUSION: MDR-TB in the private sector results in "catastrophic health costs". Financial and social support is essential for patients undergoing treatment for MDR-TB.


Asunto(s)
Costo de Enfermedad , Tuberculosis Extensivamente Resistente a Drogas/economía , Gastos en Salud , Tuberculosis Pulmonar/economía , Adulto , Técnicas y Procedimientos Diagnósticos/economía , Costos de los Medicamentos , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Femenino , Hospitalización/economía , Humanos , India , Masculino , Centros de Atención Terciaria , Viaje/economía , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/economía , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/economía , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico
18.
BMC Infect Dis ; 19(1): 94, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30691407

RESUMEN

BACKGROUND: India has the world's highest tuberculosis burden, and Mumbai is particularly affected by multidrug resistant tuberculosis (MDR-TB). WHO recommends short, intensive treatment ("Short Course") for previously untreated pulmonary MDR-TB patients but does not require universal drug susceptibility testing (DST) before Short Course. DST would likely screen out many MDR-TB patients in places like Mumbai with significant drug resistance. METHODS: MDR-TB patients at a private clinic were recruited for a prospective observational cohort. Short Course eligibility was evaluated by clinical criteria and DST results. Eligibility by DST was classified as rifampin monoresistance (as tested by Xpert MTB/RIF), rifampin, fluoroquinolones, and 2nd-line injectable drugs resistance (as tested by line probe assays) and resistance to other drugs. RESULTS: Of 559 participants with MDR-TB, 33% met clinical eligibility for Short Course. DST for rifampin, fluoroquinolones, and 2nd-line injectable drugs excluded 74.7% of participants. Complete phenotypic DST excluded 96.6% of participants. Prior treatment with either 1st or 2nd-line drugs did not significantly affect eligibility. CONCLUSIONS: In a global MDR-TB hotspot, < 5% of participants with MDR-TB were appropriate for Short Course by clinical characteristics and DST results. Rapid molecular testing would not sufficiently identify drug resistance in this population. Eligibility rates were not significantly reduced by prior TB treatment.


Asunto(s)
Antituberculosos/administración & dosificación , Determinación de la Elegibilidad , Selección de Paciente , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Adulto , Instituciones de Atención Ambulatoria , Estudios de Cohortes , Esquema de Medicación , Determinación de la Elegibilidad/normas , Determinación de la Elegibilidad/estadística & datos numéricos , Femenino , Fluoroquinolonas/administración & dosificación , Adhesión a Directriz/estadística & datos numéricos , Hospitales Privados , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Rifampin/administración & dosificación , Adulto Joven
19.
J Infect ; 78(1): 35-39, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30096332

RESUMEN

OBJECTIVES: No study evaluated the contribution of adjunctive surgery in bedaquiline-treated patients. This study describes treatment outcomes and complications in a cohort of drug-resistant pulmonary tuberculosis (TB) cases treated with bedaquiline-containing regimens undergoing surgery. METHODS: This retrospective observational study recruited patients treated for TB in 12 centres in 9 countries between January 2007 and March 2015. Patients who had surgical indications in a bedaquiline-treated programme-based cohort were selected and surgery-related information was collected. Patient characteristics and surgical indications were described together with type of operation, surgical complications, bacteriological conversion rates, and treatment outcomes. Treatment outcomes were evaluated according to the time of surgery. RESULTS: 57 bedaquiline-exposed cases resistant to a median of 7 drugs had indication for surgery (52 retreatments; 50 extensively drug-resistant (XDR) or pre XDR-TB). Sixty percent of cases initiated bedaquiline treatment following surgery, while 36.4% underwent the bedaquiline regimen before surgery and completed it after the operation. At treatment completion 90% culture-converted with 69.1% achieving treatment success; 21.8% had unfavourable outcomes (20.0% treatment failure, 1.8% lost to follow-up), and 9.1% were still undergoing treatment. CONCLUSIONS: The study results suggest that bedaquiline and surgery can be safely and effectively combined in selected cases with a specific indication.


Asunto(s)
Antituberculosos/uso terapéutico , Diarilquinolinas/uso terapéutico , Procedimientos Quirúrgicos Operativos/estadística & datos numéricos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Adulto , Coinfección/microbiología , Coinfección/virología , Femenino , Infecciones por VIH/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Tuberculosis Resistente a Múltiples Medicamentos/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA