Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762366

RESUMEN

Exosomes, key mediators of intercellular transmission of pathogenic proteins, such as amyloid-beta and tau, significantly influence the progression and exacerbation of Alzheimer's disease (AD) pathology. Present in a variety of biological fluids, including cerebrospinal fluid, blood, saliva, and nasal lavage fluid (NLF), exosomes underscore their potential as integral mediators of AD pathology. By serving as vehicles for disease-specific molecules, exosomes could unveil valuable insights into disease identification and progression. This study emphasizes the imperative to investigate the impacts of exosomes on neural networks to enhance our comprehension of intracerebral neuronal communication and its implications for neurological disorders like AD. After harvesting exosomes derived from NLF of 5XFAD mice, we utilized a high-density multielectrode array (HD-MEA) system, the novel technology enabling concurrent recordings from thousands of neurons in primary cortical neuron cultures and organotypic hippocampal slices. The ensuing results revealed a surge in neuronal firing rates and disoriented neural connectivity, reflecting the effects provoked by pathological amyloid-beta oligomer treatment. The local field potentials in the exosome-treated hippocampal brain slices also exhibited aberrant rhythmicity, along with an elevated level of current source density. While this research is an initial exploration, it highlights the potential of exosomes in modulating neural networks under AD conditions and endorses the HD-MEA as an efficacious tool for exosome studies.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Ratones , Animales , Exosomas/metabolismo , Líquido del Lavado Nasal , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047612

RESUMEN

Alzheimer's disease (AD) is a multifactorial disorder that affects cognitive functioning, behavior, and neuronal properties. The neuronal dysfunction is primarily responsible for cognitive decline in AD patients, with many causal factors including plaque accumulation of Aß42. Neural hyperactivity induced by Aß42 deposition causes abnormalities in neural networks, leading to alterations in synaptic activity and interneuron dysfunction. Even though neuroimaging techniques elucidated the underlying mechanism of neural connectivity, precise understanding at the cellular level is still elusive. Previous multielectrode array studies have examined the neuronal network modulation in in vitro cultures revealing the relevance of ion channels and the chemical modulators in the presence of Aß42. In this study, we investigated neuronal connectivity and dynamic changes using a high-density multielectrode array, particularly looking at network-wide parameter changes over time. By comparing the neuronal network between normal and Aß42treated neuronal cultures, it was possible to discover the direct pathological effect of the Aß42 oligomer altering the network characteristics. The detrimental effects of the Aß42 oligomer included not only a decline in spike activation but also a qualitative impairment in neural connectivity as well as a disorientation of dispersibility. As a result, this will improve our understanding of how neural networks are modified during AD progression.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/patología , Fragmentos de Péptidos/farmacología , Neuronas/patología
3.
Mol Psychiatry ; 27(11): 4770-4780, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948663

RESUMEN

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder, which is characterized by cognitive deficit due to synaptic loss and neuronal death. Extracellular amyloid ß plaques are one of the pathological hallmarks of AD. The autophagic lysosomal pathway is the essential mechanism to maintain cellular homeostasis by driving clearance of protein aggregates and is dysfunctional in AD. Here, we showed that inhibiting MEK/ERK signaling using a clinically available MEK1/2 inhibitor, trametinib (GSK1120212, SNR1611), induces the protection of neurons through autophagic lysosomal activation mediated by transcription factor EB (TFEB) in a model of AD. Orally administered trametinib recovered impaired neural structures, cognitive functions, and hippocampal long-term potentiation (LTP) in 5XFAD mice. Trametinib also reduced Aß deposition via induction of autophagic lysosomal activation. RNA-sequencing analysis revealed upregulation of autophagic lysosomal genes by trametinib administration. In addition, trametinib inhibited TFEB phosphorylation at Ser142 and promoted its nuclear translocation, which in turn induced autophagic lysosomal related genes, indicating that trametinib activates the autophagic lysosomal process through TFEB activation. From these observations, we concluded that MEK inhibition provides neuronal protection from the Aß burden by increasing autophagic lysosomal activity. Thus, MEK inhibition may be an effective therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Lisosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Placa Amiloide/metabolismo , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA