Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700031

RESUMEN

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Asunto(s)
Biocatálisis , Catecol O-Metiltransferasa , Flavonoides , Proteínas Fúngicas , Hongos Shiitake , Hongos Shiitake/enzimología , Hongos Shiitake/genética , Hongos Shiitake/química , Hongos Shiitake/metabolismo , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Catecol O-Metiltransferasa/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Flavonoides/química , Flavonoides/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Micelio/enzimología , Micelio/genética , Micelio/química , Micelio/metabolismo , Especificidad por Sustrato
2.
iScience ; 26(9): 107565, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664630

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.

3.
Biomolecules ; 13(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37189397

RESUMEN

The comprehensive identification of the proteome content from a white wine (cv. Silvaner) is described here for the first time. The wine protein composition isolated from a representative wine sample (250 L) was identified via mass spectrometry (MS)-based proteomics following in-solution and in-gel digestion methods after being submitted to size exclusion chromatographic (SEC) fractionation to gain a comprehensive insight into proteins that survive the vinification processes. In total, we identified 154 characterized (with described functional information) or so far uncharacterized proteins, mainly from Vitis vinifera L. and Saccharomyces cerevisiae. With the complementarity of the two-step purification, the digestion techniques and the high-resolution (HR)-MS analyses provided a high-score identification of proteins from low to high abundance. These proteins can be valuable for future authentication of wines by tracing proteins derived from a specific cultivar or winemaking process. The proteomics approach presented herein may also be generally helpful to understand which proteins are important for the organoleptic properties and stability of wines.


Asunto(s)
Vitis , Vino , Vino/análisis , Proteómica/métodos , Vitis/química , Espectrometría de Masas , Saccharomyces cerevisiae , Proteoma/metabolismo
4.
Biomolecules ; 13(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36979386

RESUMEN

Thermolabile grape berry proteins such as thaumatin-like proteins (TLPs) and chitinases (CHIs) promote haze formation in bottled wines if not properly fined. As a natural grapevine pest, the spotted-wing fly Drosophila suzukii is a promising source of peptidases that break down grape berry proteins because the larvae develop and feed inside mature berries. Therefore, we produced recombinant TLP and CHI as model thermolabile wine haze proteins and applied a peptidomics strategy to investigate whether D. suzukii larval peptidases were able to digest them under acidic conditions (pH 3.5), which are typically found in winemaking practices. The activity of the novel peptidases was confirmed by mass spectrometry, and cleavage sites within the wine haze proteins were visualized in 3D protein models. The combination of recombinant haze proteins and peptidomics provides a valuable screening tool to identify optimal peptidases suitable for clarification processes in the winemaking industry.


Asunto(s)
Vitis , Vino , Animales , Vino/análisis , Drosophila/metabolismo , Larva/metabolismo , Vitis/química , Proteínas de Plantas/metabolismo
5.
Molecules ; 27(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234944

RESUMEN

Cross-linking net aggregates of thermolabile thaumatin-like proteins (TLPs) and chitinases (CHIs) are the primary source of haze in white wines. Although bentonite fining is still routinely used in winemaking, alternative methods to selectively remove haze proteins without affecting wine organoleptic properties are needed. The availability of pure TLPs and CHIs would facilitate the research for the identification of such technological advances. Therefore, we proposed the usage of recombinant TLP (rTLP) and CHI (rCHI), expressed by Komagataella phaffii, as haze-protein models, since they showed similar characteristics (aggregation potential, melting point, functionality, glycosylation levels and bentonite adsorption) to the native-haze proteins from Vitis vinifera. Hence, rTLP and rCHI can be applied to study haze formation mechanisms on a molecular level and to explore alternative fining methods by screening proteolytic enzymes and ideal adsorptive resins.


Asunto(s)
Quitinasas , Vitis , Vino , Bentonita/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Aditivos Alimentarios/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Vino/análisis
6.
Foods ; 11(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36076794

RESUMEN

In traditional cheese making, pregastric lipolytic enzymes of animal origin are used for the acceleration of ripening and the formation of spicy flavor compounds. Especially for cheese specialities, such as Pecorino, Provolone, or Feta, pregastric esterases (PGE) play an important role. A lipase from Pleurotus citrinopileatus could serve as a substitute for these animal-derived enzymes, thus offering vegetarian, kosher, and halal alternatives. However, the hydrolytic activity of this enzyme towards long-chain fatty acids is slightly too high, which may lead to off-flavors during long-term ripening. Therefore, an optimization via protein engineering (PE) was performed by changing the specificity towards medium-chain fatty acids. With a semi-rational design, possible mutants at eight different positions were created and analyzed in silico. Heterologous expression was performed for 24 predicted mutants, of which 18 caused a change in the hydrolysis profile. Three mutants (F91L, L302G, and L305A) were used in application tests to produce Feta-type brine cheese. The sensory analyses showed promising results for cheeses prepared with the L305A mutant, and SPME-GC-MS analysis of volatile free fatty acids supported these findings. Therefore, altering the chain length specificity via PE becomes a powerful tool for the replacement of PGEs in cheese making.

7.
J Mol Struct ; 1268: 133709, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35846732

RESUMEN

The rapidly evolving Coronavirus Disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide with thousands of deaths and infected cases. For the identification of effective treatments against this disease, the main protease (Mpro) of SARS­CoV­2 was found to be an attractive drug target, as it played a central role in viral replication and transcription. Here, we report the results of high-throughput molecular docking with 1,045,468 ligands' structures from 116 kinds of traditional Chinese medicine (TCM). Subsequently, 465 promising candidates were obtained, showing high binding affinities. The dynamic simulation, ADMET (absorption, distribution, metabolism, excretion and toxicity) and drug-likeness properties were further analyzed the screened docking results. Basing on these simulation results, 23 kinds of Chinese herbal extracts were employed to study their inhibitory activity for Mpro of SARS­CoV­2. Plants extracts from Forsythiae Fructus, Radix Puerariae, Radix astragali, Anemarrhenae Rhizoma showed acceptable inhibitory efficiencies, which were over 70%. The best candidate was Anemarrhenae Rhizoma, reaching 78.9%.

8.
J Nat Prod ; 85(4): 888-898, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35239335

RESUMEN

The azinothricin family comprises several cyclic hexadepsipeptides with diverse pharmacological bioactivities, including antimicrobial, antitumoral, and apoptosis induction. In this work, using a genome mining approach, a biosynthetic gene cluster encoding an azinothricin-like compound was identified from the Streptomyces sp. s120 genome sequence (pop BGC). Comparative MS analysis of extracts from the native producer and a knockout mutant led to the identification of metabolites corresponding to the pop BGC. Furthermore, regulatory elements of the BGC were identified. By overexpression of an LmbU-like transcriptional activator, the production yield of 1 and 2 was increased, enabling isolation and structure elucidation of polyoxyperuin A seco acid (1) and polyoxyperuin A (2) using high-resolution mass spectrometry and NMR spectroscopy. Compound 1 exhibited a low antibiotic effect against Micrococcus luteus, while 2 showed a strong Gram-positive antibiotic effect in a micro-broth-dilution assay.


Asunto(s)
Streptomyces , Antibacterianos/metabolismo , Antibacterianos/farmacología , Familia de Multigenes , Streptomyces/genética , Streptomyces/metabolismo
9.
J Agric Food Chem ; 70(9): 2998-3008, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35213163

RESUMEN

Traditionally produced piquant cheeses such as Feta or Provolone rely on pregastric lipolytic enzymes of animal origin to intensify flavor formation during ripening. Herein, we report a novel fungal lipase, derived from the phylum Basidiomycota to replace animal-derived products. A screening of 31 strains for the desired hydrolytic activities was performed, which revealed a promising fungal species. The secretome of an edible golden oyster mushroom, Pleurotus citrinopileatus, provided suitable enzymatic activity, and the coding sequence of the corresponding enzyme was identified by combining transcriptome and liquid chromatography high-resolution electrospray tandem mass spectroscopy (LC-HR-ESI-MS/MS) data. Recombinant expression in Escherichia coli BL21 (DE3) using chaperones GroES-GroEL and DnaK-DnaJ-GrpE was established. The recombinant lipolytic enzyme was purified and biochemically characterized in terms of thermal and pH stability, optimal reaction conditions, and kinetic data toward p-nitrophenyl esters. An application in the microscale production of Feta-type brine cheese revealed promising sensory properties, which were confirmed by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analyses in comparison with the reference enzyme opti-zym z10uc from goat origin. Supplementation with 2.3 U of the heterologously expressed fungal lipase produced the most comparable free fatty acid profile after 30 days of ripening. The flavor and texture formed during the application of the new lipase from P. citrinopileatus proved to be competitive to the use of pregastric lipases and could therefore replace the products of animal origin.


Asunto(s)
Queso , Pleurotus , Animales , Queso/análisis , Lipasa/genética , Lipasa/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Espectrometría de Masas en Tándem
10.
J Agric Food Chem ; 69(48): 14402-14414, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34823353

RESUMEN

To meet consumer expectations, white wines must be clear and stable against haze formation. Temperature variations during transport and storage may induce protein aggregation, mainly caused by thaumatin like-proteins (TLPs) and chitinases (CHIs), which thus need to be fined before bottling of the wine. Currently, bentonite clay is employed to inhibit or minimize haze formation in wines. Alternatively, peptidases have emerged as an option for the removal of these thermolabile proteins, although their efficacy under winemaking conditions has not yet been fully demonstrated. The simultaneous understanding of the chemistry behind the cleavage of haze proteins and the haze formation may orchestrate alternative methods of technological and economic importance in winemaking. Therefore, we provide an overview of wine fining by peptidases, and new perspectives are developed to reopen discussions on the aforementioned challenges.


Asunto(s)
Quitinasas , Vitis , Vino , Péptido Hidrolasas , Proteínas de Plantas , Vino/análisis
11.
Microorganisms ; 9(8)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34442660

RESUMEN

Staphylotrichum longicolleum FW57 (DSM105789) is a prolific chitinolytic fungus isolated from wood, with a chitinase activity of 0.11 ± 0.01 U/mg. We selected this strain for genome sequencing and annotation, and compiled its growth characteristics on four different chitinous substrates as well as two agro-industrial waste products. We found that the enzymatic mixture secreted by FW57 was not only able to digest pre-treated sugarcane bagasse, but also untreated sugarcane bagasse and maize leaves. The efficiency was comparable to a commercial enzymatic cocktail, highlighting the potential of the S. longicolleum enzyme mixture as an alternative pretreatment method. To further characterize the enzymes, which efficiently digested polymers such as cellulose, hemicellulose, pectin, starch, and lignin, we performed in-depth mass spectrometry-based secretome analysis using tryptic peptides from in-gel and in-solution digestions. Depending on the growth conditions, we were able to detect from 442 to 1092 proteins, which were annotated to identify from 134 to 224 putative carbohydrate-active enzymes (CAZymes) in five different families: glycoside hydrolases, auxiliary activities, carbohydrate esterases, polysaccharide lyases, glycosyl transferases, and proteins containing a carbohydrate-binding module, as well as combinations thereof. The FW57 enzyme mixture could be used to replace commercial enzyme cocktails for the digestion of agro-residual substrates.

12.
Food Chem ; 363: 130437, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34214891

RESUMEN

Prevention of haze formation in wines is challenging for winemakers. Thermolabile proteins in wines, notably thaumatin-like proteins (TLPs) and chitinases (CHIs), undergo structural changes under varying physicochemical conditions, resulting in protein aggregation and visible haze in bottled products. Peptidases are an alternative fining method, although an effective proteolysis under typical winemaking conditions (acidic pH and low temperature) is difficult to achieve. In this study, tryptic peptides from TLPs and CHIs were identified by MS-based peptidomics (top-down proteomics) after exposure of scissile bonds on the protein surface. As proposed by the theory of limited proteolysis, protein conformational changes following temperature and pH variations allowed the detection of enzyme-accessible regions. Protein structure visualization and molecular dynamics simulations were used to highlight cleavage spots and provide the scientific basis for haze formation mechanisms. The described method offers a tool to the search for ideal enzymes to prevent wine haze.


Asunto(s)
Quitinasas , Vitis , Vino , Péptidos , Proteínas de Plantas , Vino/análisis
13.
Biotechnol Biofuels ; 14(1): 74, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743779

RESUMEN

BACKGROUND: The transition to a biobased economy involving the depolymerization and fermentation of renewable agro-industrial sources is a challenge that can only be met by achieving the efficient hydrolysis of biomass to monosaccharides. In nature, lignocellulosic biomass is mainly decomposed by fungi. We recently identified six efficient cellulose degraders by screening fungi from Vietnam. RESULTS: We characterized a high-performance cellulase-producing strain, with an activity of 0.06 U/mg, which was identified as a member of the Fusarium solani species complex linkage 6 (Fusarium metavorans), isolated from mangrove wood (FW16.1, deposited as DSM105788). The genome, representing nine potential chromosomes, was sequenced using PacBio and Illumina technology. In-depth secretome analysis using six different synthetic and artificial cellulose substrates and two agro-industrial waste products identified 500 proteins, including 135 enzymes assigned to five different carbohydrate-active enzyme (CAZyme) classes. The F. metavorans enzyme cocktail was tested for saccharification activity on pre-treated sugarcane bagasse, as well as untreated sugarcane bagasse and maize leaves, where it was complemented with the commercial enzyme mixture Accellerase 1500. In the untreated sugarcane bagasse and maize leaves, initial cell wall degradation was observed in the presence of at least 196 µg/mL of the in-house cocktail. Increasing the dose to 336 µg/mL facilitated the saccharification of untreated sugarcane biomass, but had no further effect on the pre-treated biomass. CONCLUSION: Our results show that F. metavorans DSM105788 is a promising alternative pre-treatment for the degradation of agro-industrial lignocellulosic materials. The enzyme cocktail promotes the debranching of biopolymers surrounding the cellulose fibers and releases reduced sugars without process disadvantages or loss of carbohydrates.

14.
AMB Express ; 11(1): 37, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661405

RESUMEN

The basidiomycetous lipoxygenase Lox1 from Cyclocybe aegerita catalyzes the oxygenation of polyunsaturated fatty acids (PUFAs) with a high preference towards the C18-PUFA linoleic acid (C18:2 (ω-6)). In contrast, longer PUFAs, generally not present in the fungal cell such as eicosatrienoic acid (C20:3(ω-3)) and docosatrienoic acid (C22:3 (ω-3)), are converted with drastically lower activities. With site-directed mutagenesis, we were able to create two variants with enhanced activities towards longer chain PUFAs. The W330L variant showed a ~ 20 % increased specific activity towards C20:3(ω-3), while a ~ 2.5-fold increased activity against C22:3 (ω-3) was accomplished by the V581 variant.

15.
Front Microbiol ; 11: 2154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071998

RESUMEN

A prerequisite for the transition toward a biobased economy is the identification and development of efficient enzymes for the usage of renewable resources as raw material. Therefore, different xylanolytic enzymes are important for efficient enzymatic hydrolysis of xylan-heteropolymers. A powerful tool to overcome the limited enzymatic toolbox lies in exhausting the potential of unexplored habitats. By screening a Vietnamese fungal culture collection of 295 undiscovered fungal isolates, 12 highly active xylan degraders were identified. One of the best xylanase producing strains proved to be an Aspergillus sydowii strain from shrimp shell (Fsh102), showing a specific activity of 0.6 U/mg. Illumina dye sequencing was used to identify our Fsh102 strain and determine differences to the A. sydowii CBS 593.65 reference strain. With activity based in-gel zymography and subsequent mass spectrometric identification, three potential proteins responsible for xylan degradation were identified. Two of these proteins were cloned from the cDNA and, furthermore, expressed heterologously in Escherichia coli and characterized. Both xylanases, were entirely different from each other, including glycoside hydrolases (GH) families, folds, substrate specificity, and inhibition patterns. The specific enzyme activity applying 0.1% birch xylan of both purified enzymes were determined with 181.1 ± 37.8 or 121.5 ± 10.9 U/mg for xylanase I and xylanase II, respectively. Xylanase I belongs to the GH11 family, while xylanase II is member of the GH10 family. Both enzymes showed typical endo-xylanase activity, the main products of xylanase I are xylobiose, xylotriose, and xylohexose, while xylobiose, xylotriose, and xylopentose are formed by xylanase II. Additionally, xylanase II showed remarkable activity toward xylotriose. Xylanase I is stable when stored up to 30°C and pH value of 9, while xylanase II started to lose significant activity stored at pH 9 after exceeding 3 days of storage. Xylanase II displayed about 40% activity when stored at 50°C for 24 h. The enzymes are tolerant toward mesophilic temperatures, while acting in a broad pH range. With site directed mutagenesis, the active site residues in both enzymes were confirmed. The presented activity and stability justify the classification of both xylanases as highly interesting for further development.

16.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693786

RESUMEN

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Asunto(s)
Productos Biológicos/química , Vías Biosintéticas/genética , Metabolómica/métodos , Humanos
17.
PLoS One ; 13(8): e0202695, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30161149

RESUMEN

Fungal strains are abundantly used throughout all areas of biotechnology and many of them are adapted to degrade complex biopolymers like chitin or lignocellulose. We therefore assembled a collection of 295 fungi from nine different habitats in Vietnam, known for its rich biodiversity, and investigated their cellulase, chitinase, xylanase and lipase activity. The collection consists of 70 isolates from wood, 55 from soil, 44 from rice straw, 3 found on fruits, 24 from oil environments (butchery), 12 from hot springs, 47 from insects as well as 27 from shrimp shells and 13 strains from crab shells. These strains were cultivated and selected by growth differences to enrich phenotypes, resulting in 211 visually different fungi. DNA isolation of 183 isolates and phylogenetic analysis was performed and 164 species were identified. All were subjected to enzyme activity assays, yielding high activities for every investigated enzyme set. In general, enzyme activity corresponded with the environment of which the strain was isolated from. Therefore, highest cellulase activity strains were isolated from wood substrates, rice straw and soil and similar substrate effects were observed for chitinase and lipase activity. Xylanase activity was similarly distributed as cellulase activity, but substantial activity was also found from fungi isolated from insects and shrimp shells. Seven strains displayed significant activities against three of the four tested substrates, while three degraded all four investigated carbon sources. The collection will be an important source for further studies. Therefore representative strains were made available to the scientific community and deposited in the public collection of the Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig.


Asunto(s)
Biopolímeros/metabolismo , Hongos/aislamiento & purificación , Celulasa/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Ecosistema , Hongos/clasificación , Hongos/enzimología , Hongos/genética , Metabolismo de los Lípidos , Filogenia , Análisis de Secuencia de ADN , Microbiología del Suelo , Vietnam , Madera/microbiología , Xilosidasas/metabolismo
18.
J Biotechnol ; 230: 11-8, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27164259

RESUMEN

Engineering cofactor specificity of enzymes is a promising approach that can expand the application of enzymes for biocatalytic production of industrially relevant chemicals. Until now, only NADPH-dependent imine reductases (IREDs) are known. This limits their applications to reactions employing whole cells as a cost-efficient cofactor regeneration system. For applications of IREDs as cell-free catalysts, (i) we created an IRED variant showing an improved activity for NADH. With rational design we were able to identify four residues in the (R)-selective IRED from Streptomyces GF3587 (IR-Sgf3587), which coordinate the 2'-phosphate moiety of the NADPH cofactor. From a set of 15 variants, the highest NADH activity was caused by the single amino acid exchange K40A resulting in a 3-fold increased acceptance of NADH. (ii) We showed its applicability using an immobilisate obtained either from purified enzyme or from lysate using the EziG(™) carriers. Applying the variant and NADH, we reached 88% conversion in a preparative scale biotransformation when employing 4% (w/v) 2-methylpyrroline. (iii) We demonstrated a one-enzyme cofactor regeneration approach using the achiral amine N-methyl-3-aminopentanone as a hydrogen donor co-substrate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas Inmovilizadas/metabolismo , Iminas/metabolismo , NAD/metabolismo , Oxidorreductasas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Desaminación , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Streptomyces/enzimología , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA