Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 15(1): 7919, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256390

RESUMEN

Ocean oxygen content is decreasing with global change. A major challenge for modelling future declines in oxygen concentration is our lack of knowledge of the natural variability associated with marine oxygen inventory on interannual and multidecadal timescales. Here, we present 10 annually resolved 200 year-long records of denitrification, a marker of deoxygenation, from a varved sedimentary archive in the North Pacific oxygen minimum zone covering key periods over the last glacial-interglacial cycle. Spectral analyses on these records reveal strong signals at periodicities typical of today's Atlantic multidecadal oscillation. Modern subsurface circulation reanalyses regressed on the positive Atlantic and Pacific Climatic Oscillation indices further confirm that North Atlantic temperature patterns are the main control on the subsurface zonal circulation and therefore the most likely dominant driver of oxygen variability in the tropical Pacific. With currently increasing temperatures in the Northern Hemisphere high latitudes and North Atlantic, we suggest deoxygenation will intensify in the region.

2.
Sci Rep ; 10(1): 1302, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992786

RESUMEN

Indian Summer Monsoon (ISM) rainfall has a direct effect on the livelihoods of two billion people in the Indian-subcontinent. Yet, our understanding of the drivers of multi-decadal variability of the ISM is far from being complete. In this context, large-scale forcing of ISM rainfall variability with multi-decadal resolution over the last two millennia is investigated using new records of sea surface salinity (δ18Ow) and sea surface temperatures (SSTs) from the Bay of Bengal (BoB). Higher δ18Ow values during the Dark Age Cold Period (1550 to 1250 years BP) and the Little Ice Age (700 to 200 years BP) are suggestive of reduced ISM rainfall, whereas lower δ18Ow values during the Medieval Warm Period (1200 to 800 years BP) and the major portion of the Roman Warm Period (1950 to 1550 years BP) indicate a wetter ISM. This variability in ISM rainfall appears to be modulated by the Atlantic Multi-decadal Oscillation (AMO) via changes in large-scale thermal contrast between the Asian land mass and the Indian Ocean, a relationship that is also identifiable in the observational data of the last century. Therefore, we suggest that inter-hemispheric scale interactions between such extra tropical forcing mechanisms and global warming are likely to be influential in determining future trends in ISM rainfall.

3.
Glob Chang Biol ; 25(12): 4116-4130, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31498935

RESUMEN

The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesized 30 years of data on the stable carbon isotope (δ13 C) signatures in dissolved inorganic carbon (δ13 C-DIC; 1977-2014), marine and riverine particulate organic carbon (δ13 C-POC; 1986-2013) and tissues of marine mammals in the Arctic. δ13 C values in consumers can change as a result of environmentally driven variation in the δ13 C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ13 C baseline, with spatial gradients in the δ13 C-POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ13 C-DIC values (-0.011‰ per year) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO2 ) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ13 C-POC values and δ13 C in arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ13 C-POC values in the Arctic Ocean and partially explain the δ13 C values in marine mammals with consideration of time-varying integration of δ13 C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Regiones Árticas , Isótopos de Carbono , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
4.
Nat Commun ; 4: 2692, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24176877

RESUMEN

The El Niño-Southern Oscillation (ENSO) is one of the most important components of the global climate system, but its potential response to an anthropogenic increase in atmospheric CO2 remains largely unknown. One of the major limitations in ENSO prediction is our poor understanding of the relationship between ENSO variability and long-term changes in Tropical Pacific oceanography. Here we investigate this relationship using palaeorecords derived from the geochemistry of planktonic foraminifera. Our results indicate a strong negative correlation between ENSO variability and zonal gradient of sea-surface temperatures across the Tropical Pacific during the last 22 ky. This strong correlation implies a mechanistic link that tightly couples zonal sea-surface temperature gradient and ENSO variability during large climate changes and provides a unique insight into potential ENSO evolution in the future by suggesting enhanced ENSO variability under a global warming scenario.


Asunto(s)
El Niño Oscilación del Sur , Plancton/fisiología , Movimientos del Agua , Tiempo (Meteorología) , Dióxido de Carbono/química , Geografía , Calentamiento Global , Oceanografía/métodos , Océano Pacífico , Estaciones del Año , Agua de Mar , Temperatura , Clima Tropical
5.
Sci Total Environ ; 373(1): 305-23, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17188336

RESUMEN

The ability to distinguish water inputs from both natural and anthropogenic sources was investigated in the complex environment of an urban estuary (Tyne) and a relatively pristine estuary (Tweed). We used a data set from a total of 11 estuarine transects, comprising measurements of bulk dissolved organic matter (dissolved organic carbon and nitrogen), dissolved nitrogen (total dissolved nitrogen, ammonium, nitrate+nitrite and dissolved organic nitrogen), optical absorbance measurements (a350, S290-350) and fluorescence excitation emission matrix measurements (fluorophores A, H, B and T intensity and A and H emission wavelength maxima). In order to investigate trends within the numerous parameters measured, multivariate statistics were employed. Principal components analyses showed 63.4% of the variability in the total data set can be explained by two sets of components and 74.9% of the variability by the spectrophotometric measurements alone. In both analyses the first component correlated to the mixing of terrestrial and marine waters and the second component was correlated to sources of pollution such as domestic sewage. Within the data set, river flow and terrestrially derived DOM were significantly correlated, and situations with high river input showed an increase in terrestrial signature in the estuary. Discriminant analyses were also carried out and indicated that 59.8% (total data set) and 53.3% (solely spectrophotometric data) of the samples can be correctly classified into their respective groups (water categories) assigned on the basis of salinity and sampling location. Overall the results clearly show the potential of spectrophotometric techniques to discriminate distinct water categories with different DOM characteristics. In particular, measurement of the fluorophore H emission maxima, the spectral slope parameter, S290-350, and fluorophores T and B intensity enabled discrimination of DOM from riverine, estuarine, marine, and sewage affected water categories. The results presented here indicate the ability of spectrophotometric data alone to distinguish between marine, anthropogenic and terrestrial DOM and distinguish terrestrial DOM from different catchments (Tyne vs. Tweed). With current advances in the in-situ deployment of absorbance and fluorescence spectroscopy it is anticipated that multivariate statistics will gain importance as a cost effective, powerful and diagnostic approach to assessing the distributions of water types and their associated DOM characteristics and fluxes at the land-ocean interface.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/clasificación , Carbono/análisis , Inglaterra , Nitratos/análisis , Nitritos/análisis , Nitrógeno/análisis , Análisis de Componente Principal , Compuestos de Amonio Cuaternario/análisis , Agua de Mar/análisis , Espectrofotometría Ultravioleta , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 372(1): 317-33, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17097720

RESUMEN

Nitrogen isotope ratios (delta(15)N) were used to help elucidate the sources and fate of ammonium (NH(4)(+)) and nitrate (NO(3)(-)) in two northeastern English estuaries. The dominant feature of NH(4)(+) in the heavily urbanised Tyne estuary was a plume arising from a single point source; a large sewage works. Although NH(4)(+) concentrations (ranging from 30-150 microM) near the sewage outfall varied considerably between surveys, the sewage-derived delta(15)N-NH(4)(+) signature was remarkably constant (+10.6+/-0.5 per thousand) and could be tracked across the estuary. As indirectly supported by (15)N-depleted delta(15)N-NO(3)(-) values observed close to the mouth of the Tyne, this sewage-derived NH(4)(+) was thought to initiate lower estuarine and coastal zone nitrification. In the more rural Tweed, NH(4)(+) concentrations were low (<7 microM) compared to those in the Tyne and delta(15)N-NH(4)(+) values were consistent with mixing between riverine and marine sources. The dominant form of dissolved inorganic nitrogen (DIN) in the Tweed was agricultural soil-derived NO(3)(-). A decrease in riverine NO(3)(-) flux during the summer coinciding with an increase in delta(15)N-NO(3)(-) values was mainly attributed to enhanced watershed nutrient processing. In the Tyne, where agricultural inputs are less important compared to the Tweed, light delta(15)N-NO(3)(-) (ca. 0 per thousand) detected in the estuary during one winter survey pointed to a larger contribution from precipitation-derived NO(3)(-) during high river discharge. Regardless of the dominant sources, in both estuaries most of the variability in DIN concentrations and delta(15)N values was explained by simple end-member mixing models, implying very little estuarine processing.


Asunto(s)
Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Monitoreo del Ambiente , Nitratos/análisis , Isótopos de Nitrógeno , Mar del Norte , Compuestos de Amonio Cuaternario/análisis , Ríos , Reino Unido , Eliminación de Residuos Líquidos
8.
Nature ; 415(6868): 156-9, 2002 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-11805830

RESUMEN

To explain the lower atmospheric CO2 concentrations during glacial periods, it has been suggested that the productivity of marine phytoplankton was stimulated by an increased flux of iron-bearing dust to the oceans. One component of this theory is that iron-an essential element/nutrient for nitrogen-fixing organisms-will increase the rate of marine nitrogen fixation, fuelling the growth of other marine phytoplankton and increasing CO2 uptake. Here we present data that questions this hypothesis. From a sediment core off the northwestern continental margin of Mexico, we show that denitrification and phosphorite formation-processes that occur in oxygen-deficient upwelling regions, removing respectively nitrogen and phosphorus from the ocean-declined in glacial periods, thus increasing marine inventories of nitrogen and phosphorus. But increases in phosphorus were smaller and less rapid, leading to increased N/P ratios in the oceans. Acknowledging that phytoplankton require nitrogen and phosphorus in constant proportions, the Redfield ratio, and that N/P ratios greater than the Redfield ratio are likely to suppress nitrogen fixation, we suggest therefore that marine productivity did not increase in glacial periods in response to either increased nutrient inventories or greater iron supply.


Asunto(s)
Fijación del Nitrógeno , Nitrógeno/metabolismo , Fósforo/metabolismo , Atmósfera , Dióxido de Carbono/metabolismo , Clima Frío , Sedimentos Geológicos , Minerales/metabolismo , Modelos Biológicos , Océanos y Mares , Fosfatos/metabolismo , Fitoplancton/metabolismo , Agua de Mar , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA