Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Animals (Basel) ; 14(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39199951

RESUMEN

Neurobrucellosis in cetaceans, caused by Brucella ceti, is a relevant cause of death in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea. Serological tests are not used as a routinary technique for the diagnosis of this infection. We briefly describe the pathological findings of nine free-ranging stranded cetaceans diagnosed with Brucella disease or infection in our veterinary necropsy service from 2012 to 2022. The findings included focal diskospondylitis and non-suppurative meningitis, choroiditis and radiculitis. Additionally, an exploratory serological study was conducted in sixty-six frozen sera collected in the period 2012-2022 from fifty-seven striped dolphins, five Risso's dolphins (Grampus griseus), two common bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis) and one pilot whale (Globicephala melas) to compare antibody levels in Brucella-infected (n = 8) and non-infected (n = 58) animals, classified by the cause of death, sex, age class and cetacean morbillivirus (CeMV) infection status. The authors hypothesized that active infection in cases of neurobrucellosis would elicit a stronger, detectable humoral response compared to subclinical infections. We performed a commercial competition ELISA (cELISA) using serial serum dilutions for each sample, considering a percentage of inhibition (PI) of ≥40% as positive. A titer of 1:160 was arbitrarily determined as the seropositivity threshold. Seropositive species included striped dolphins and Risso's dolphins. Seroprevalence was higher in animals with neurobrucellosis (87.5%) compared to the overall seroprevalence (31.8%) and to other causes of death, indicating, likely, a high sensitivity but low specificity for neurobrucellosis. Animals with chronic CeMV seemed to have higher seroprevalences, as well as juveniles, which also had a higher disease prevalence. These results indicate, as in other studies, that antibodies are not decisive against clinical brucellosis, although they may indicate a carrier state, and that CeMV may influence Brucella epidemiology. More research is required to elucidate the epidemiology and pathogenesis and to resolve the complicated host-pathogen interaction in Brucella species.

2.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39203958

RESUMEN

The transplacental transmission of CSFV and the resulting persistent congenital infection in newborn piglets have been abundantly discussed in pregnant sows suffering from virus infection. Importantly, the availability of safe commercial vaccines with proven efficacy to prevent the generation of congenital and postnatal persistent infections in pregnant sows are critical tools for controlling the disease in CSF endemic areas. Here, we demonstrate the high efficacy of a single dose of the recombinant FlagT4G vaccine to provide solid protection in pregnant sows against transplacental transmission of a highly virulent CSFV. Pregnant sows vaccinated with FlagT4G at 44 days of gestation elicited a strong CSFV-specific antibody response, with neutralizing antibody levels above those required for protection against CSFV. Importantly, after the challenge with a highly virulent CSFV, all foetuses from FlagT4G-vaccinated sows lacked CSF macroscopic lesions and showed a complete absence of the challenge virus in their internal organs at day 79 of gestation. Therefore, pregnant sows safely vaccinated with FlagT4G without affecting reproductive efficacy are efficaciously protected, along with their foetuses, against the infection and disease caused by a CSFV virulent field strain.

3.
Front Cell Infect Microbiol ; 14: 1372166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686097

RESUMEN

Background: Classical swine fever virus (CSFV) remains one of the most important pathogens in animal health. Pathogen detection relies on viral RNA extraction followed by RT-qPCR. Novel technologies are required to improve diagnosis at the point of care. Methods: A loop-mediated isothermal amplification (LAMP) PCR technique was developed, with primers designed considering all reported CSFV genotypes. The reaction was tested using both fluorometric and colorimetric detection, in comparison to the gold standard technique. Viral strains from three circulating CSFV genotypes were tested, as well as samples from infected animals. Other pathogens were also tested, to determine the LAMP specificity. Besides laboratory RNA extraction methods, a heating method for RNA release, readily available for adaptation to field conditions was evaluated. Results: Three primer sets were generated, with one of them showing better performance. This primer set proved capable of maintaining optimal performance at a wide range of amplification temperatures (60°C - 68°C). It was also able to detect CSFV RNA from the three genotypes tested. The assay was highly efficient in detection of samples from animals infected with field strains from two different genotypes, with multiple matrices being detected using both colorimetric and fluorometric methods. The LAMP assay was negative for all the unrelated pathogens tested, including Pestiviruses. The only doubtful result in both fluorometric and colorimetric LAMP was against the novel Pestivirus italiaense, ovine Italy Pestivirus (OVPV), which has proven to have cross-reaction with multiple CSFV diagnostic techniques. However, it is only possible to detect the OVPV in a doubtful result if the viral load is higher than 10000 viral particles. Conclusion: The results from the present study show that LAMP could be an important addition to the currently used molecular diagnostic techniques for CSFV. This technique could be used in remote locations, given that it can be adapted for successful use with minimal equipment and minimally invasive samples. The joined use of novel and traditional diagnostic techniques could prove to be a useful alternative to support the CSF control.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Genotipo , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , Sensibilidad y Especificidad , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/aislamiento & purificación , Virus de la Fiebre Porcina Clásica/clasificación , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Peste Porcina Clásica/diagnóstico , Peste Porcina Clásica/virología , Porcinos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , ARN Viral/genética , ARN Viral/aislamiento & purificación , Cartilla de ADN/genética , Colorimetría/métodos , Temperatura
4.
Viruses ; 16(1)2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275957

RESUMEN

Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Animales , Porcinos , Virulencia/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/química , Mutación
5.
Front Cell Infect Microbiol ; 13: 1258321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780850

RESUMEN

Influenza A viruses (IAVs) are characterized by having a segmented genome, low proofreading polymerases, and a wide host range. Consequently, IAVs are constantly evolving in nature causing a threat to animal and human health. In 2009 a new human pandemic IAV strain arose in Mexico because of a reassortment between two strains previously circulating in pigs; Eurasian "avian-like" (EA) swine H1N1 and "human-like" H1N2, highlighting the importance of swine as adaptation host of avian to human IAVs. Nowadays, although of limited use, a trivalent vaccine, which include in its formulation H1N1, H3N2, and, H1N2 swine IAV (SIAV) subtypes, is one of the most applied strategies to reduce SIAV circulation in farms. Protection provided by vaccines is not complete, allowing virus circulation, potentially favoring viral evolution. The evolutionary dynamics of SIAV quasispecies were studied in samples collected at different times from 8 vaccinated and 8 nonvaccinated pigs, challenged with H1N2 SIAV. In total, 32 SIAV genomes were sequenced by next-generation sequencing, and subsequent variant-calling genomic analysis was carried out. Herein, a total of 364 de novo single nucleotide variants (SNV) were found along all genetic segments in both experimental groups. The nonsynonymous substitutions proportion found was greater in vaccinated animals suggesting that H1N2 SIAV was under positive selection in this scenario. The impact of each substitution with an allele frequency greater than 5% was hypothesized according to previous literature, particularly in the surface glycoproteins hemagglutinin and neuraminidase. The H1N2 SIAV quasispecies evolution capacity was evidenced, observing different evolutionary trends in vaccinated and nonvaccinated animals.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Virus de la Influenza A/genética , Filogenia
6.
Front Cell Infect Microbiol ; 13: 1111143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992684

RESUMEN

Influenza A viruses (IAVs) can infect a wide variety of bird and mammal species. Their genome is characterized by 8 RNA single stranded segments. The low proofreading activity of their polymerases and the genomic reassortment between different IAVs subtypes allow them to continuously evolve, constituting a constant threat to human and animal health. In 2009, a pandemic of an IAV highlighted the importance of the swine host in IAVs adaptation between humans and birds. The swine population and the incidence of swine IAV is constantly growing. In previous studies, despite vaccination, swine IAV growth and evolution were proven in vaccinated and challenged animals. However, how vaccination can drive the evolutionary dynamics of swine IAV after coinfection with two subtypes is poorly studied. In the present study, vaccinated and nonvaccinated pigs were challenged by direct contact with H1N1 and H3N2 independent swine IAVs seeder pigs. Nasal swab samples were daily recovered and broncho-alveolar lavage fluid (BALF) was also collected at necropsy day from each pig for swine IAV detection and whole genome sequencing. In total, 39 swine IAV whole genome sequences were obtained by next generation sequencing from samples collected from both experimental groups. Subsequently, genomic, and evolutionary analyses were carried out to detect both, genomic reassortments and single nucleotide variants (SNV). Regarding the segments found per sample, the simultaneous presence of segments from both subtypes was much lower in vaccinated animals, indicating that the vaccine reduced the likelihood of genomic reassortment events. In relation to swine IAV intra-host diversity, a total of 239 and 74 SNV were detected within H1N1 and H3N2 subtypes, respectively. Different proportions of synonymous and nonsynonymous substitutions were found, indicating that vaccine may be influencing the main mechanism that shape swine IAV evolution, detecting natural, neutral, and purifying selection in the different analyzed scenarios. SNV were detected along the whole swine IAV genome with important nonsynonymous substitutions on polymerases, surface glycoproteins and nonstructural proteins, which may have an impact on virus replication, immune system escaping and virulence of virus, respectively. The present study further emphasized the vast evolutionary capacity of swine IAV, under natural infection and vaccination pressure scenarios.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus Reordenados/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Virus de la Influenza A/genética , Genómica , Vacunación/veterinaria , Enfermedades de los Porcinos/prevención & control , Mamíferos
7.
Front Cell Infect Microbiol ; 13: 1114772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779186

RESUMEN

African swine fever virus (ASFV) currently represents the biggest threat to the porcine industry worldwide, with high economic impact and severe animal health and welfare concerns. Outbreaks have occurred in Europe and Asia since ASFV was reintroduced into the continent in 2007 and, in 2021, ASFV was detected in the Caribbean, raising alarm about the reemergence of the virus in the Americas. Given the lack of vaccines against ASFV, control of the virus relies on molecular surveillance, which can be delayed due to the need for sample shipment to specialized laboratories. Isothermal PCR techniques, such as LAMP, have become increasingly attractive as point-of-care diagnostic tools given the minimal material expense, equipment, and training required. The present study aimed to develop a LAMP assay for the detection of ASFV. Four LAMP primer sets were designed, based on a consensus sequence for the ASFV p72 gene, and were tested using a synthetic plasmid containing the cloned ASFV p72 target gene as a positive control. Two primer sets, were selected for further validation, given their very short time for amplification. Both primer sets showed thermal stability, amplifying the ASFV DNA at temperatures between 60-70°C and proved to have an analytical limit of detection as low as one ASFV-plasmid DNA copy/µL, using both fluorometric and colorimetric methods. The selected primers did not yield false positive or cross reactive results with other common swine pathogens, showing high specificity. Testing of DNA-spiked samples showed that LAMP amplification was not affected by the nature of the matrices, including oral fluids, tonsils, blood, or rectal swabs. The primer sets were able to detect the two more prevalent ASFV genotypes in the field. Taken together, the results show that ASFV-LAMP-BG2 and ASFV-LAMP-BG3 would be a useful tool for rapid, highly sensitive on-site diagnostic testing.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Fiebre Porcina Africana/diagnóstico , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Clonación Molecular , ADN Viral/genética , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Porcinos
8.
Viruses ; 16(1)2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275939

RESUMEN

The 2023 International African Swine Fever Workshop (IASFW) took place in Beijing, China, on 18-20 September 2023. It was jointly organized by the U.S.-China Center for Animal Health (USCCAH) at Kansas State University (KSU) and the Chinese Veterinary Drug Association (CVDA) and sponsored by the United States Department of Agriculture Foreign Agricultural Service (USDA-FAS), Harbin Veterinary Research Institute, and Zoetis Inc. The objective of this workshop was to provide a platform for ASF researchers around the world to unite and share their knowledge and expertise on ASF control and prevention. A total of 24 outstanding ASF research scientists and experts from 10 countries attended this meeting. The workshop included presentations on current ASF research, opportunities for scientific collaboration, and discussions of lessons and experiences learned from China/Asia, Africa, and Europe. This article summarizes the meeting highlights and presents some critical issues that need to be addressed for ASF control and prevention in the future.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Humanos , Fiebre Porcina Africana/prevención & control , Fiebre Porcina Africana/epidemiología , Asia , China/epidemiología , África/epidemiología , Sus scrofa , Brotes de Enfermedades/veterinaria
9.
Viruses ; 14(9)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36146761

RESUMEN

Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination, mostly using vaccines that do not allow for differentiation of vaccinated from infected animals (DIVA). FlagT4G vaccine is a novel candidate that confers robust immunity and shows DIVA capabilities. The present study assessed the immune response elicited by FlagT4G and its capacity to protect pigs for a short time after vaccination. Five days after a single dose of FlagT4G vaccine, animals were challenged with a highly virulent CSFV strain. A strong, but regulated, interferon-α response was found after vaccination. Vaccinated animals showed clinical and virological protection against the challenge, in the absence of antibody response at 5 days post-vaccination. Upon challenge, a rapid rise in the titers of CSFV neutralizing antibodies and an increase in the IFN-γ producing cells were noticed in all vaccinated-challenged pigs. Meanwhile, unvaccinated pigs showed severe clinical signs and high viral replication, being euthanized before the end of the trial. These animals were unable to generate neutralizing antibodies and IFN-γ responses after the CSFV challenge. The results from the present study assert the fast and efficient protection by FlagT4G, a highly promising tool for CSFV control worldwide.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Interferón-alfa , Porcinos , Vacunación
10.
Viruses ; 14(9)2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36146814

RESUMEN

Swine influenza viruses (SIV) produce a highly contagious and worldwide distributed disease that can cause important economic losses to the pig industry. Currently, this virus is endemic in farms and, although used limitedly, trivalent vaccine application is the most extended strategy to control SIV. The presence of pre-existing immunity against SIV may modulate the evolutionary dynamic of this virus. To better understand these dynamics, the viral variants generated in vaccinated and nonvaccinated H3N2 challenged pigs after recovery from a natural A(H1N1) pdm09 infection were determined and analyzed. In total, seventeen whole SIV genomes were determined, 6 from vaccinated, and 10 from nonvaccinated animals and their inoculum, by NGS. Herein, 214 de novo substitutions were found along all SIV segments, 44 of them being nonsynonymous ones with an allele frequency greater than 5%. Nonsynonymous substitutions were not found in NP; meanwhile, many of these were allocated in PB2, PB1, and NS1 proteins. Regarding HA and NA proteins, higher nucleotide diversity, proportionally more nonsynonymous substitutions with an allele frequency greater than 5%, and different domain allocations of mutants, were observed in vaccinated animals, indicating different evolutionary dynamics. This study highlights the rapid adaptability of SIV in different environments.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Nucleótidos , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Porcinos , Enfermedades de los Porcinos/epidemiología
11.
J Virol ; 96(14): e0043822, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758667

RESUMEN

In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3' untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3' UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3' UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3' UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3' UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Síndrome de Liberación de Citoquinas , Regiones no Traducidas 3'/genética , Inmunidad Adaptativa/genética , Animales , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/patología , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/enzimología , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/inmunología , Virus de la Fiebre Porcina Clásica/patogenicidad , Síndrome de Liberación de Citoquinas/genética , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología , Citocinas , Inmunidad Innata/genética , Interferón-alfa/inmunología , Interleucina-12/inmunología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Porcinos , Vacunas Virales , Virulencia/genética
12.
Transbound Emerg Dis ; 69(3): 1539-1555, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33896109

RESUMEN

Several emerging pestiviruses have been reported lately, some of which have proved to cause disease. Recently, a new ovine pestivirus (OVPV), isolated from aborted lambs, with high genetic identity to classical swine fever virus (CSFV), has proved to induce reproductive disorders in pregnant ewes. OVPV also generated strong serological and molecular cross-reaction with CSFV. To assess the capacity of OVPV to infect swine, twelve piglets were infected either by intranasal or intramuscular route. Daily clinical evaluation and weekly samplings were performed to determine pathogenicity, viral replication and excretion and induction of immune response. Five weeks later, two pigs from each group were euthanized and tissue samples were collected to study viral replication and distribution. OVPV generated only mild clinical signs in the piglets, including wasting and polyarthritis. The virus was able to replicate, as shown by the RNA levels found in sera and swabs and persisted in tonsil for at least 5 weeks. Viral replication activated the innate and adaptive immunity, evidenced by the induction of interferon-alpha levels early after infection and cross-neutralizing antibodies against CSFV, including humoural response against CSFV E2 and Erns glycoproteins. Close antigenic relation between OVPV and CSFV genotype 2.3 was detected. To determine the OVPV protection against CSFV, the OVPV-infected pigs were challenged with a highly virulent strain. Strong clinical, virological and immunological protection was generated in the OVPV-infected pigs, in direct contrast with the infection control group. Our findings show, for the first time, the OVPV capacity to infect swine, activate immunity, and the robust protection conferred against CSFV. In addition, their genetic and antigenic similarities, the close relationship between both viruses, suggest their possible coevolution as two branches stemming from a shared origin at the same time in two different hosts.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Pestivirus , Enfermedades de las Ovejas , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus de la Fiebre Porcina Clásica/genética , Reacciones Cruzadas , Femenino , Pestivirus/genética , Embarazo , Ovinos , Porcinos , Proteínas del Envoltorio Viral/genética
13.
Viruses ; 13(10)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34696410

RESUMEN

Classical swine fever virus (CSFV) causes a viral disease of high epidemiological and economical significance that affects domestic and wild swine. Control of the disease in endemic countries is based on live-attenuated vaccines (LAVs) that induce an early protective immune response against highly virulent CSFV strains. The main disadvantage of these currently available LAVs is the lack of serological techniques to differentiate between vaccinated and infected animals (DIVA concept). Here, we describe the development of the FlagDIVA test, a serological diagnostic tool allowing for the differentiation between animals vaccinated with the FlagT4G candidate and those infected with CSFV field strains. The FlagDIVA test is a direct ELISA based on a dendrimeric peptide construct displaying a conserved epitope of CSFV structural protein E2. Although FlagDIVA detected anti-CSFV anti-bodies in infected animals, it did not recognize the antibody response of FlagT4G-vaccinated animals. Therefore, the FlagDIVA test constitutes a valuable accessory DIVA tool in implementing vaccination with the FlagT4G candidate.


Asunto(s)
Virus de la Fiebre Porcina Clásica/inmunología , Dendrímeros/farmacología , Ensayo de Inmunoadsorción Enzimática/métodos , Animales , Anticuerpos Antivirales/metabolismo , Línea Celular , Peste Porcina Clásica/prevención & control , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/patogenicidad , Epítopos/metabolismo , Inmunización , Péptidos/farmacología , Porcinos/inmunología , Vacunación/métodos , Vacunación/veterinaria , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología
14.
Viruses ; 13(10)2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34696517

RESUMEN

Influenza viruses represent a continuous threat to both animal and human health. The 2009 H1N1 A influenza pandemic highlighted the importance of a swine host in the adaptation of influenza viruses to humans. Nowadays, one of the most extended strategies used to control swine influenza viruses (SIVs) is the trivalent vaccine application, whose formulation contains the most frequently circulating SIV subtypes H1N1, H1N2, and H3N2. These vaccines do not provide full protection against the virus, allowing its replication, evolution, and adaptation. To better understand the main mechanisms that shape viral evolution, here, the SIV intra-host diversity was analyzed in samples collected from both vaccinated and nonvaccinated animals challenged with the H1N1 influenza A virus. Twenty-eight whole SIV genomes were obtained by next-generation sequencing, and differences in nucleotide variants between groups were established. Substitutions were allocated along all influenza genetic segments, while the most relevant nonsynonymous substitutions were allocated in the NS1 protein on samples collected from vaccinated animals, suggesting that SIV is continuously evolving despite vaccine application. Moreover, new viral variants were found in both vaccinated and nonvaccinated pigs, showing relevant substitutions in the HA, NA, and NP proteins, which may increase viral fitness under field conditions.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/epidemiología , Animales , Brotes de Enfermedades/veterinaria , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Filogenia , Porcinos/virología , Enfermedades de los Porcinos/virología
15.
Virulence ; 12(1): 2037-2049, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34339338

RESUMEN

The prevalence of low virulence classical swine fever virus (CSFV) strains makes viral eradication difficult in endemic countries. However, the determinants for natural CSFV attenuation and persistence in the field remain unidentified. The aim of the present study was to assess the role of the RNase activity of CSFV Erns in pathogenesis, immune response, persistent infection, and viral transmission in pigs. To this end, a functional cDNA clone pPdR-H30K-36U with an Erns lacking RNase activity was constructed based on the low virulence CSFV field isolate Pinar de Rio (PdR). Eighteen 5-day-old piglets were infected with vPdR-H30K-36U. Nine piglets were introduced as contacts. The vPdR-H30K-36U virus was attenuated in piglets compared to the parental vPdR-36U. Only RNA traces were detected in sera and body secretions and no virus was isolated from tonsils, showing that RNase inactivation may reduce CSFV persistence and transmissibility. The vPdR-H30K-36U mutant strongly activated the interferon-α (IFN-α) production in plasmacytoid dendritic cells, while in vivo, the IFN-α response was variable, from moderate to undetectable depending on the animal. This suggests a role of the CSFV Erns RNase activity in the regulation of innate immune responses. Infection with vPdR-H30K-36U resulted in higher antibody levels against the E2 and Erns glycoproteins and in enhanced neutralizing antibody responses when compared with vPdR-36U. These results pave the way toward a better understanding of viral attenuation mechanisms of CSFV in pigs. In addition, they provide novel insights relevant for the development of DIVA vaccines in combination with diagnostic assays for efficient CSF control.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Inmunidad Humoral , Ribonucleasas , Animales , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/transmisión , Virus de la Fiebre Porcina Clásica/enzimología , Infección Persistente , Ribonucleasas/genética , Porcinos , Virulencia
16.
Vaccines (Basel) ; 9(5)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066901

RESUMEN

Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.

17.
Vaccines (Basel) ; 9(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066376

RESUMEN

Classical swine fever virus (CSFV) remains a challenge for the porcine industry. Inefficient vaccination programs in some endemic areas may have contributed to the emergence of low and moderate virulence CSFV variants. This work aimed to expand and update the information about the safety and efficacy of the CSFV Thiverval-strain vaccine. Two groups of pigs were vaccinated, and a contact and control groups were also included. Animals were challenged with a highly virulent CSFV strain at 21- or 5-days post vaccination (dpv). The vaccine induced rapid and strong IFN-α response, mainly in the 5-day immunized group, and no vaccine virus transmission was detected. Vaccinated pigs showed humoral response against CSFV E2 and Erns glycoproteins, with neutralising activity, starting at 14 days post vaccination (dpv). Strong clinical protection was afforded in all the vaccinated pigs as early as 5 dpv. The vaccine controlled viral replication after challenge, showing efficient virological protection in the 21-day immunized pigs despite being housed with animals excreting high CSFV titres. These results demonstrate the high efficacy of the Thiverval strain against CSFV replication. Its early protection capacity makes it a useful alternative for emergency vaccination and a consistent tool for CSFV control worldwide.

18.
Vaccines (Basel) ; 9(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922120

RESUMEN

The efficacy of a novel subunit vaccine candidate, based in the CSFV E2 glycoprotein produced in plants to prevent classical swine fever virus (CSFV) vertical transmission, was evaluated. A Nicotiana benthamiana tissue culture system was used to obtain a stable production of the E2-glycoprotein fused to the porcine Fc region of IgG. Ten pregnant sows were divided into three groups: Groups 1 and 2 (four sows each) were vaccinated with either 100 µg/dose or 300 µg/dose of the subunit vaccine at 64 days of pregnancy. Group 3 (two sows) was injected with PBS. Groups 1 and 2 were boosted with the same vaccine dose. At 10 days post second vaccination, the sows in Groups 2 and 3 were challenged with a highly virulent CSFV strain. The vaccinated sows remained clinically healthy and seroconverted rapidly, showing efficient neutralizing antibodies. The fetuses from vaccinated sows did not show gross lesions, and all analyzed tissue samples tested negative for CSFV replication. However, fetuses of non-vaccinated sows had high CSFV replication in tested tissue samples. The results suggested that in vaccinated sows, the plant produced E2 marker vaccine induced the protective immunogenicity at challenge, leading to protection from vertical transmission to fetuses.

19.
Dis Aquat Organ ; 142: 239-253, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33331291

RESUMEN

The causes of cetacean stranding and death along the Catalan coast between 2012 and 2019 were systematically investigated. Necropsies and detailed pathological investigations were performed on 89 well-preserved stranded cetaceans, including 72 striped dolphins Stenella coeruleoalba, 9 Risso's dolphins Grampus griseus, 5 bottlenose dolphins Tursiops truncatus, 1 common dolphin Delphinus delphis, 1 Cuvier's beaked whale Ziphius cavirostris and 1 fin whale Balaenoptera physalus. The cause of death was determined for 89.9% of the stranded cetaceans. Fisheries interaction was the most frequent cause of death in striped dolphins (27.8%) and bottlenose dolphins (60%). Cetacean morbillivirus (CeMV) was detected on the Catalan coast from 2016 to 2017, causing systemic disease and death in 8 of the 72 (11.1%) striped dolphins. Chronic CeMV infection of the central nervous system was observed from 2018-2019 in a further 5 striped dolphins. Thus, acute and chronic CeMV disease caused mortality in 18% of striped dolphins and 14.6% of all 89 cetaceans. Brucella ceti was isolated in 6 striped dolphins and 1 bottlenose dolphin with typical brucellosis lesions and in 1 striped dolphin with systemic CeMV. Sinusitis due to severe infestation by the nematode parasite Crassicauda grampicola caused the death of 4 out of 6 adult Risso's dolphins. Maternal separation, in some cases complicated with septicemia, was a frequent cause of death in 13 of 14 calves. Other less common causes of death were encephalomalacia of unknown origin, septicemia, peritonitis due to gastric perforation by parasites and hepatitis caused by Sarcocystis spp.


Asunto(s)
Privación Materna , Infecciones por Morbillivirus , Animales , Brucella , Mar Mediterráneo , Infecciones por Morbillivirus/epidemiología , Infecciones por Morbillivirus/veterinaria , España/epidemiología
20.
Virus Res ; 289: 198151, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32898613

RESUMEN

Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Peste Porcina Clásica , Animales , Peste Porcina Clásica/diagnóstico , Peste Porcina Clásica/epidemiología , Peste Porcina Clásica/virología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA