Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
R Soc Open Sci ; 11(3): 231574, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481985

RESUMEN

Tumour-immune microenvironment (TIME) is pivotal in tumour progression and immunoediting. Within TIME, immune cells undergo metabolic adjustments impacting nutrient supply and the anti-tumour immune response. Metabolic reprogramming emerges as a promising approach to revert the immune response towards a pro-inflammatory state and conquer tumour dominance. This study proposes immunomodulatory mechanisms based on metabolic reprogramming and employs the regulatory flux balance analysis modelling approach, which integrates signalling, metabolism and regulatory processes. For the first time, a comprehensive system-level model is constructed to capture signalling and metabolic cross-talks during tumour-immune interaction and regulatory constraints are incorporated by considering the time lag between them. The model analysis identifies novel features to enhance the immune response while suppressing tumour activity. Particularly, altering the exchange of succinate and oxaloacetate between glioma and macrophage enhances the pro-inflammatory response of immune cells. Inhibition of glutamate uptake in T-cells disrupts the antioxidant mechanism of glioma and reprograms metabolism. Metabolic reprogramming through adenosine monophosphate (AMP)-activated protein kinase (AMPK), coupled with glutamate uptake inhibition, was identified as the most impactful combination to restore T-cell function. A comprehensive understanding of metabolism and gene regulation represents a favourable approach to promote immune cell recovery from tumour dominance.

2.
NAR Cancer ; 5(3): zcad040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37502711

RESUMEN

Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.

3.
Pathog Dis ; 79(8)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34677584

RESUMEN

Interactions of Leishmania donovani secretory virulence factors with the host proteins and their interplay during the infection process in humans is poorly studied in Visceral Leishmaniasis. Lack of a holistic study of pathway level de-regulations caused due to these virulence factors leads to a poor understanding of the parasite strategies to subvert the host immune responses, secure its survival inside the host and further the spread of infection to the visceral organs. In this study, we propose a computational workflow to predict host-pathogen protein interactome of L.donovani secretory virulence factors with human proteins combining sequence-based Interolog mapping and structure-based Domain Interaction mapping techniques. We further employ graph theoretical approaches and shortest path methods to analyze the interactome. Our study deciphers the infection paths involving some unique and understudied disease-associated signaling pathways influencing the cellular phenotypic responses in the host. Our statistical analysis based in silico knockout study unveils for the first time UBC, 1433Z and HS90A mediator proteins as potential immunomodulatory candidates through which the virulence factors employ the infection paths. These identified pathways and novel mediator proteins can be effectively used as possible targets to control and modulate the infection process further aiding in the treatment of Visceral Leishmaniasis.


Asunto(s)
Biología Computacional/métodos , Interacciones Huésped-Parásitos , Leishmania donovani/fisiología , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/parasitología , Mapeo de Interacción de Proteínas/métodos , Proteínas Protozoarias/metabolismo , Susceptibilidad a Enfermedades , Ontología de Genes , Humanos , Redes Neurales de la Computación , Fenotipo , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Factores de Virulencia/metabolismo
4.
Front Oncol ; 11: 625899, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791212

RESUMEN

Drug resistance is one of the critical challenges faced in the treatment of Glioma. There are only limited drugs available in the treatment of Glioma and among them Temozolomide (TMZ) has shown some effectiveness in treating Glioma patients, however, the rate of recovery remains poor due to the inability of this drug to act on the drug resistant tumor sub-populations. Hence, in this study three novel Acridone derivative drugs AC2, AC7, and AC26 have been proposed. These molecules when combined with TMZ show major tumor cytotoxicity that is effective in suppressing growth of cancer cells in both drug sensitive and resistant sub-populations of a tumor. In this study a novel mathematical model has been developed to explore the various drug combinations that may be useful for the treatment of resistant Glioma and show that the combinations of TMZ and Acridone derivatives have a synergistic effect. Also, acute toxicity studies of all three acridone derivatives were carried out for 14 days and were found safe for oral administration of 400 mg/kg body weight on albino Wistar rats. Molecular Docking studies of acridone derivatives with P-glycoprotein (P-gp), multiple resistant protein (MRP), and O6-methylguanine-DNA methyltransferase (MGMT) revealed different binding affinities to the transporters contributing to drug resistance. It is observed that while the Acridone derivatives bind with these drug resistance causing proteins, the TMZ can produce its cytotoxicity at a much lower concentration leading to the synergistic effect. The in silico analysis corroborate well with our experimental findings using TMZ resistant (T-98) and drug sensitive (U-87) Glioma cell lines and we propose three novel drug combinations (TMZ with AC2, AC7, and AC26) and dosages that show high synergy, high selectivity and low collateral toxicity for the use in the treatment of drug resistant Glioma, which could be future drugs in the treatment of Glioblastoma.

5.
PLoS One ; 15(11): e0242943, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253254

RESUMEN

Essential gene prediction helps to find minimal genes indispensable for the survival of any organism. Machine learning (ML) algorithms have been useful for the prediction of gene essentiality. However, currently available ML pipelines perform poorly for organisms with limited experimental data. The objective is the development of a new ML pipeline to help in the annotation of essential genes of less explored disease-causing organisms for which minimal experimental data is available. The proposed strategy combines unsupervised feature selection technique, dimension reduction using the Kamada-Kawai algorithm, and semi-supervised ML algorithm employing Laplacian Support Vector Machine (LapSVM) for prediction of essential and non-essential genes from genome-scale metabolic networks using very limited labeled dataset. A novel scoring technique, Semi-Supervised Model Selection Score, equivalent to area under the ROC curve (auROC), has been proposed for the selection of the best model when supervised performance metrics calculation is difficult due to lack of data. The unsupervised feature selection followed by dimension reduction helped to observe a distinct circular pattern in the clustering of essential and non-essential genes. LapSVM then created a curve that dissected this circle for the classification and prediction of essential genes with high accuracy (auROC > 0.85) even with 1% labeled data for model training. After successful validation of this ML pipeline on both Eukaryotes and Prokaryotes that show high accuracy even when the labeled dataset is very limited, this strategy is used for the prediction of essential genes of organisms with inadequate experimentally known data, such as Leishmania sp. Using a graph-based semi-supervised machine learning scheme, a novel integrative approach has been proposed for essential gene prediction that shows universality in application to both Prokaryotes and Eukaryotes with limited labeled data. The essential genes predicted using the pipeline provide an important lead for the prediction of gene essentiality and identification of novel therapeutic targets for antibiotic and vaccine development against disease-causing parasites.


Asunto(s)
Genes Esenciales/genética , Enfermedades Genéticas Congénitas/genética , Aprendizaje Automático , Redes y Vías Metabólicas/genética , Algoritmos , Área Bajo la Curva , Análisis por Conglomerados , Enfermedades Genéticas Congénitas/diagnóstico , Humanos , Máquina de Vectores de Soporte
6.
PLoS One ; 13(9): e0203030, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30183728

RESUMEN

The tumor microenvironment comprising of the immune cells and cytokines acts as the 'soil' that nourishes a developing tumor. Lack of a comprehensive study of the interactions of this tumor microenvironment with the heterogeneous sub-population of tumor cells that arise from the differentiation of Cancer Stem Cells (CSC), i.e. the 'seed', has limited our understanding of the development of drug resistance and treatment failures in Cancer. Based on this seed and soil hypothesis, for the very first time, we have captured the concept of CSC differentiation and tumor-immune interaction into a generic model that has been validated with known experimental data. Using this model we report that as the CSC differentiation shifts from symmetric to asymmetric pattern, resistant cancer cells start accumulating in the tumor that makes it refractory to therapeutic interventions. Model analyses unveiled the presence of feedback loops that establish the dual role of M2 macrophages in regulating tumor proliferation. The study further revealed oscillations in the tumor sub-populations in the presence of TH1 derived IFN-γ that eliminates CSC; and the role of IL10 feedback in the regulation of TH1/TH2 ratio. These analyses expose important observations that are indicative of Cancer prognosis. Further, the model has been used for testing known treatment protocols to explore the reasons of failure of conventional treatment strategies and propose an improvised protocol that shows promising results in suppressing the proliferation of all the cellular sub-populations of the tumor and restoring a healthy TH1/TH2 ratio that assures better Cancer remission.


Asunto(s)
Modelos Inmunológicos , Microambiente Tumoral/inmunología , Citocinas/metabolismo , Progresión de la Enfermedad , Resistencia a Antineoplásicos/inmunología , Humanos , Macrófagos/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Células Madre Neoplásicas/inmunología , Inducción de Remisión
7.
Front Immunol ; 9: 296, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527208

RESUMEN

Diseases by protozoan pathogens pose a significant public health concern, particularly in tropical and subtropical countries, where these are responsible for significant morbidity and mortality. Protozoan pathogens tend to establish chronic infections underscoring their competence at subversion of host immune processes, an important component of disease pathogenesis and of their virulence. Modulation of cytokine and chemokine levels, their crosstalks and downstream signaling pathways, and thereby influencing recruitment and activation of immune cells is crucial to immune evasion and subversion. Many protozoans are now known to secrete effector molecules that actively modulate host immune transcriptome and bring about alterations in host epigenome to alter cytokine levels and signaling. The complexity of multi-dimensional events during interaction of hosts and protozoan parasites ranges from microscopic molecular levels to macroscopic ecological and epidemiological levels that includes disrupting metabolic pathways, cell cycle (Toxoplasma and Theileria sp.), respiratory burst, and antigen presentation (Leishmania spp.) to manipulation of signaling hubs. This requires an integrative systems biology approach to combine the knowledge from all these levels to identify the complex mechanisms of protozoan evolution via immune escape during host-parasite coevolution. Considering the diversity of protozoan parasites, in this review, we have focused on Leishmania and Plasmodium infections. Along with the biological understanding, we further elucidate the current efforts in generating, integrating, and modeling of multi-dimensional data to explain the modulation of cytokine networks by these two protozoan parasites to achieve their persistence in host via immune escape during host-parasite coevolution.


Asunto(s)
Citocinas/inmunología , Interacciones Huésped-Parásitos/inmunología , Leishmaniasis/inmunología , Malaria/inmunología , Humanos , Evasión Inmune/inmunología , Leishmania/inmunología , Leishmania/patogenicidad , Plasmodium/inmunología , Plasmodium/patogenicidad , Biología de Sistemas/métodos
8.
J Integr Bioinform ; 15(3)2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29547394

RESUMEN

BIOPYDB: BIOchemical PathwaY DataBase is developed as a manually curated, readily updatable, dynamic resource of human cell specific pathway information along with integrated computational platform to perform various pathway analyses. Presently, it comprises of 46 pathways, 3189 molecules, 5742 reactions and 6897 different types of diseases linked with pathway proteins, which are referred by 520 literatures and 17 other pathway databases. With its repertoire of biochemical pathway data, and computational tools for performing Topological, Logical and Dynamic analyses, BIOPYDB offers both the experimental and computational biologists to acquire a comprehensive understanding of signaling cascades in the cells. Automated pathway image reconstruction, cross referencing of pathway molecules and interactions with other databases and literature sources, complex search operations to extract information from other similar resources, integrated platform for pathway data sharing and computation, etc. are the novel and useful features included in this database to make it more acceptable and attractive to the users of pathway research communities. The RESTful API service is also made available to the advanced users and developers for accessing this database more conveniently through their own computer programmes.


Asunto(s)
Bases de Datos Factuales , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos , Ontología de Genes , Genómica , Humanos , Redes y Vías Metabólicas , Proteínas/genética , Proteínas/metabolismo , Integración de Sistemas , Interfaz Usuario-Computador
9.
EURASIP J Bioinform Syst Biol ; 2015(1): 13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26660865

RESUMEN

Leishmania devices its survival strategy by suppressing the host's immune functions. The antigen molecules produced by Leishmania interferes with the host's cell signaling cascades and consequently changes the protein expression pattern of the antigen-presenting cell (APC). This creates an environment suitable for the switching of the T-cell responses from a healing Th1 response to a non-healing Th2 response that is favorable for the continued survival of the parasite inside the host APC. Using a reconstructed signaling network of the intracellular and intercellular reactions between a Leishmania infected APC and T-cell, we propose a computational model to predict the inhibitory effect of the Leishmania infected APC on the T-cell and to identify the regulators of this Th1-/Th2-switching behavior as observed during Leishmania infection. In this work, we hypothesize that a complete removal of the parasite could only be achieved with a simultaneous up-regulation of the healing Th1 response and stimulation of nitric oxide (NO) production from the APCs, and downregulation of the non-healing Th2 response and thereby propose several unique combinations of protein molecules that could elicit this anti-Leishmania immune response. Our results indicate that TLR3 may play a positive role in eliciting NO synthesis, while TLR2 may be responsible for inhibiting an anti-Leishmania immune response. Also, TLR3 overexpression (in the APC), when combined with SHP2 inhibition (in the T cell), produces an anti-Leishmania response that is better than the conventional IFN-gamma or IL12 treatment. A similar anti-Leishmania response is also obtained in another combination where TLR3 (in APC) is overexpressed, and SHC and MKP (of T cell) are inhibited and activated, respectively. Through our study, we also observe that Leishmania infection may induce an upregulation of IFN-beta production from the APC that may lead to an upregulation of the RAP1 and SOCS3 proteins inside the T cell, the potential inhibitors of MAPK and JAK-STAT signaling pathways, respectively, via the TYK2-mediated pathway. This study not only enhances our knowledge in understanding the Th1/Th2 regulatory switch to promote healing response during leishmaniasis but also helps to identify novel combinations of proteins as potential immunomodulators.

10.
J Biosci ; 40(4): 769-89, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26564978

RESUMEN

Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell's functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical equations and simulated using the published time series microarray expression data as inputs. After validating the model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted, which shows significant variations among the proteins expression and the signalling routes through which the response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to study the changes in protein expression patterns and helps to predict variations in the cellular behaviour.


Asunto(s)
Receptores Coestimuladores e Inhibidores de Linfocitos T/genética , Redes Reguladoras de Genes/inmunología , Activación de Linfocitos/genética , Transducción de Señal , Linfocitos T/inmunología , Canales de Calcio/genética , Canales de Calcio/inmunología , Receptores Coestimuladores e Inhibidores de Linfocitos T/inmunología , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Análisis por Micromatrices , Proteína ORAI1 , Linfocitos T/citología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA