Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38554280

RESUMEN

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Asunto(s)
Autofagia , Inhibidores de Puntos de Control Inmunológico , Ganglios Linfáticos , Esfingosina/análogos & derivados , Linfocitos T , Autofagia/efectos de los fármacos , Animales , Ganglios Linfáticos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones Endogámicos C57BL , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Células Endoteliales/metabolismo , Esfingosina/farmacología , Esfingosina/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Inmunoterapia/métodos , Movimiento Celular
2.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38009521

RESUMEN

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Asunto(s)
Melanoma , Humanos , Ratones , Animales , Melanoma/patología , Células Endoteliales/metabolismo , Linfocitos T CD8-positivos , FN-kappa B/metabolismo , Autofagia , Inmunoterapia , Microambiente Tumoral
3.
Nat Commun ; 13(1): 2760, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589749

RESUMEN

Autophagy has vasculoprotective roles, but whether and how it regulates lymphatic endothelial cells (LEC) homeostasis and lymphangiogenesis is unknown. Here, we show that genetic deficiency of autophagy in LEC impairs responses to VEGF-C and injury-driven corneal lymphangiogenesis. Autophagy loss in LEC compromises the expression of main effectors of LEC identity, like VEGFR3, affects mitochondrial dynamics and causes an accumulation of lipid droplets (LDs) in vitro and in vivo. When lipophagy is impaired, mitochondrial ATP production, fatty acid oxidation, acetyl-CoA/CoA ratio and expression of lymphangiogenic PROX1 target genes are dwindled. Enforcing mitochondria fusion by silencing dynamin-related-protein 1 (DRP1) in autophagy-deficient LEC fails to restore LDs turnover and lymphatic gene expression, whereas supplementing the fatty acid precursor acetate rescues VEGFR3 levels and signaling, and lymphangiogenesis in LEC-Atg5-/- mice. Our findings reveal that lipophagy in LEC by supporting FAO, preserves a mitochondrial-PROX1 gene expression circuit that safeguards LEC responsiveness to lymphangiogenic mediators and lymphangiogenesis.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos , Animales , Autofagia/genética , Células Endoteliales/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Linfangiogénesis/genética , Vasos Linfáticos/metabolismo , Ratones , Mitocondrias , Factores de Transcripción/metabolismo
4.
Front Oncol ; 9: 171, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949450

RESUMEN

Cancer cell-stromal cell crosstalk is orchestrated by a plethora of ligand-receptor interactions generating a tumor microenvironment (TME) which favors tumor growth. The high pro-angiogenic nature of the TME perpetuates the chaotic network of structurally immature, low pericyte-covered vessels characteristic of the tumor vasculature. We previously demonstrated that chloroquine (CQ) -a lysosomotropic agent used as first-generation autophagy blocker in clinical trials- induced tumor vessel normalization and reduced tumor hypoxia. CQ improved both vessel structure and maturation, whereas the conditional knockout of the crucial autophagy gene Atg5 in endothelial cells (ECs) did not, thus highlighting a potential differential role for EC-associated autophagy and the lysosomes in pathological tumor angiogenesis. However, how CQ or ATG5-deficiency in ECs affect angiogenic signals regulating EC-pericyte interface and therefore vessel maturation, remains unknown. Here, we show that in ECs CQ constrained VEGF-A-mediated VEGF receptor (VEGFR)2 phosphorylation, a driver of angiogenic signaling. In the presence of CQ we observed increased expression of the decoy receptor VEGFR1 and of a lower molecular weight form of VEGFR2, suggesting receptor cleavage. Consequently, VEGF-A-driven EC spheroid sprouting was reduced by CQ treatment. Furthermore, CQ significantly affected the transcription and secretion of platelet-derived growth factor (PDGF)-AB/BB (upregulated) and Endothelin-1 (EDN1, downregulated), both modulators of perivascular cell (PC) behavior. In contrast, silencing of ATG5 in ECs had no effect on VEGFR2 to VEGFR1 ratio nor on PDGFB and EDN1 expression. Accordingly, mice harboring B16F10 melanoma tumors treated with CQ, displayed both an increased number of αSMA+ PCs covering tumor vessels and co-expressed PDGF receptor-ß, enabling PDGF ligand dependent recruitment. Moreover, upon CQ treatment the tumoral expression of angiopoietin-1 (Angpt1), which retains mural cells, and induces vessel stabilization by binding to the EC-localized cognate receptor (TIE2), was increased thus supporting the vessel normalization function of CQ. These features associated with improved tumor vasculature were not phenocopied by the specific deletion of Atg5 in ECs. In conclusion, this study further unravels endothelial cell autonomous and non-autonomous mechanisms by which CQ "normalizes" the intercellular communication in the tumor vasculature independent of autophagy.

5.
PLoS One ; 10(6): e0127870, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26061732

RESUMEN

Worldwide most pollinators, e.g. bumblebees, are undergoing global declines. Loss of genetic diversity can play an essential role in these observed declines. In this paper, we investigated the level of genetic diversity of seven declining Bombus species and four more stable species with the use of microsatellite loci. Hereto we genotyped a unique collection of museum specimens. Specimens were collected between 1918 and 1926, in 6 provinces of the Netherlands which allowed us to make interspecific comparisons of genetic diversity. For the stable species B. pascuorum, we also selected populations from two additional time periods: 1949-1955 and 1975-1990. The genetic diversity and population structure in B. pascuorum remained constant over the three time periods. However, populations of declining bumblebee species showed a significantly lower genetic diversity than co-occurring stable species before their major declines. This historical difference indicates that the repeatedly observed reduced genetic diversity in recent populations of declining bumblebee species is not caused solely by the decline itself. The historically low genetic diversity in the declined species may be due to the fact that these species were already rare, making them more vulnerable to the major drivers of bumblebee decline.


Asunto(s)
Abejas/genética , Variación Genética , Repeticiones de Microsatélite , Animales , Evolución Biológica , Genética de Población , Genotipo , Museos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA