Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157773

RESUMEN

Amphibians, with their unique physiology and habitat requirements, are especially vulnerable to changes in environmental temperatures. While the activation of the physiological stress response can help to mitigate the impact of such habitat alteration, chronic production of elevated glucocorticoid levels can be deleterious in nature. There is no empirical evidence indicating the physiological response of African amphibians to temperature changes, where individuals are unable to emigrate away from potential stressors. To rectify this, we used the edible bullfrog (Pyxicephalus edulis) as a model species to determine the effect of elevated temperature on the adrenocortical response of the species using a recently established matrix. While a control group was kept at a constant temperature (25 °C) throughout the study period, an experimental group was exposed to control (25 °C) and elevated temperatures (30 °C). Mucous swabs were collected throughout the study period to determine dermal glucocorticoid (dGC) concentrations, as a proxy for physiological stress. In addition to this, individual body mass measurements were collected. The results showed that individuals within the experimental group who experienced increased temperatures had significantly elevated dGC levels compared to the control animals. Furthermore, there was a significant difference in the percentage mass change between experimental and control animals . These findings indicate the physiological sensitivity of the edible bullfrog to a thermal stressor in captivity. While this study shows the importance of proper amphibian management within the captive environment, it also highlights the coming danger of global climate change to this and similar amphibian species.


Asunto(s)
Glucocorticoides , Calor , Estrés Fisiológico , Animales , Calor/efectos adversos , Glucocorticoides/metabolismo , Estrés Fisiológico/fisiología , Anuros/fisiología , Anuros/metabolismo
2.
Proc Biol Sci ; 291(2022): 20240371, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714210

RESUMEN

Naked mole-rats (Heterocephalus glaber) live in large colonies with one breeding female (queen), one to three breeding males (BMs) and the remainder are non-reproductive subordinates. The animals have a linear dominance rank with the breeders at the top of the hierarchy. We investigated how dominance rank in naked mole-rats differs with exploration (the propensity to explore a novel environment) and related endocrine markers. Exploration behaviour, faecal progestagen metabolite (fPM), faecal glucocorticoid metabolite (fGCM), faecal androgen metabolite (fAM) and plasma prolactin concentrations were quantified in breeding, high-, middle- and low-ranked females and males from five naked mole-rat colonies. There were no significant differences between the dominance rank and exploration behaviour. Interestingly, the queens and high-ranking females had higher fGCM and fAM concentrations compared with middle- and low-ranked females. The queens had significantly higher fPM concentrations than all other ranked females, since they are responsible for procreation. In the males, the BMs had higher fGCM concentrations compared with high- and low-ranked males. In addition, BMs and middle-ranking males had overall higher prolactin levels than all other ranked males, which could be linked to cooperative care. Overall, the results suggest that physiological reproductive suppression is linked to high dominance rank.


Asunto(s)
Andrógenos , Heces , Ratas Topo , Prolactina , Predominio Social , Animales , Masculino , Femenino , Prolactina/metabolismo , Prolactina/sangre , Heces/química , Ratas Topo/fisiología , Andrógenos/metabolismo , Andrógenos/sangre , Glucocorticoides/metabolismo , Conducta Exploratoria , Progestinas/metabolismo
3.
J Am Assoc Lab Anim Sci ; 63(3): 316-324, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508696

RESUMEN

Vehicular whole-body vibration (WBV) can have long-term adverse effects on human quality of life. Animal models can be used to study pathophysiologic effects of vibration. The goal of this study was to assess animal cooperation and well-being to determine the feasibility of a novel seated rat model for investigating the effects of WBV on biologic systems. Twenty-four male Sprague???Dawley rats were used. The experiment consisted of an acclimation phase, 2 training phases (TrP1 and TrP2), and a testing phase (TeP), including weekly radiographic imaging. During acclimation, rats were housed in pairs in standard cages without vibration. First, experimental (EG; n = 18) and control group 1 (C1; n = 3) rats were placed in a vibration apparatus without vibration, with increasing duration over 5 d during TrP1. EG rats were exposed to vertical random WBV that was increased in magnitude over 5 d during TrP2 until reaching the vibration signal used during TeP (15min, 0.7m??s-2 root mean square, unweighted). C1 rats were placed in the vibration apparatus but received no vibration during any phase. Control group 2 (C2; n = 3) rats remained in the home cages. Cooperation was evaluated with regard to rat-apparatus interactions and position compliance. Behavior, weight, and fecal glucocorticoid metabolite concentrations (fGCM) were used to evaluate animal well-being. We observed good cooperation and no behavioral patterns or weight loss between phases, indicating little or no animal stress. The differences in fGCM concentration between groups indicated that the EG rats had lower stress levels than the control rats in all phases except TrP1. Thus, this model elicited little or no stress in the conscious, unrestrained, seated rats.


Asunto(s)
Estudios de Factibilidad , Ratas Sprague-Dawley , Vibración , Animales , Vibración/efectos adversos , Masculino , Ratas/fisiología , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA