Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Adv Healthc Mater ; : e2401020, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742703

RESUMEN

Chemotherapy is widely used for cancer therapy but with unsatisfied efficacy, mainly due to the inefficient delivery of anticancer agents. Among the critical "five steps" drug delivery process, internalization into tumor cells and intracellular drug release are two important steps for the overall therapeutic efficiency. Strategy based on active targeting or TME-responsive is developed individually to improve therapeutic efficiency, but with limited improvement. However, the combination of these two strategies could potentially augment the drug delivery efficiency and therapeutic efficiency, consequently. Therefore, this work constructs a library of stimuli-responsive aptamer-drug conjugates (srApDCs), as "dual-targeted" strategy for cancer treatment that enables targeted drug delivery and controlled drug release. Specifically, this work uses different stimuli-responsive linkers to conjugate a tumor-targeting aptamer (i.e., AS1411) with drugs, forming the library of srApDCs for targeted cancer treatment. This design hypothesis is validated by the experimental data, which indicated that the aptamer could selectively enhance uptake of the srApDCs and the linkers could be cleaved by pathological cues in the TME to release the drug payload, leading to a significant enhancement of therapeutic efficacy. These results underscore the potential of the approach, providing a promising methodology for cancer therapy.

2.
Cell ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38744281

RESUMEN

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.

3.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731648

RESUMEN

A series of novel binuclear PNP ligands based on the cyclohexyldiamine scaffold were synthesized for this study. The experimental results showed that positioning the two PNP sites at the para-positions of the cyclohexyl framework led to a significant enhancement in the catalytic activity for selective tri/tetramerization of ethylene. The PNP/Cr(acac)3/MAO(methylaluminoxane) catalytic system exhibited relatively high catalytic activity (up to 3887.7 kg·g-1·h-1) in selective ethylene oligomerization with a total selectivity of 84.5% for 1-hexene and 1-octene at 40 °C and 50 bar. The relationship between the ligand structure and ethylene oligomerization performance was further explored using density functional theory calculations.

4.
Foods ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731687

RESUMEN

Consumers are increasing their daily demand for beef and are becoming more discerning about its nutritional quality and flavor. The present objective was to evaluate how the ration energy content (combined net energy, Nemf) impacts the slaughter performance, carcass characteristics, and meat qualities of Honghe yellow cattle raised in confinement. Fifteen male Honghe yellow cattle were divided into three groups based on a one-way design: a low-energy group (LEG, 3.72 MJ/kg), a medium-energy group (MEG, 4.52 MJ/kg), and a high-energy group (HEG, 5.32 MJ/kg). After a period of 70 days on these treatments, the animals were slaughtered and their slaughter performance was determined, and the longissimus dorsi muscle (LD) and biceps femoris (BF) muscles were gathered to evaluate meat quality and composition. Increasing the dietary energy concentration led to marked improvements (p < 0.05) in the live weight before slaughter (LWBS), weight of carcass, backfat thickness, and loin muscle area. HEG also improved the yield of high-grade commercial cuts (13.47% vs. 10.39%) (p < 0.05). However, meat quality traits were not affected by treatment except for shear force, which was affected by dietary energy. A significant improvement (p < 0.05) in the intramuscular fat (IMF) content was observed in the HEG. Little effect on the amino acid profile was observed (p > 0.05), except for a tendency (p = 0.06) to increase the histidine concentration in the BF muscle. Increasing dietary energy also reduced C22:6n-3 and saturated fatty acids (SFAs) and enhanced C18:1 cis-9 and monounsaturated fatty acids (MUFAs, p < 0.05). Those results revealed that increasing energy levels of diets could enhance slaughter traits and affect the meat quality and fatty acid composition of different muscle tissues of Honghe yellow cattle. These results contribute to the theoretical foundation to formulate nutritional standards and design feed formulas for the Honghe yellow cattle.

5.
Dev Cell ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38821057

RESUMEN

The interactions of environmental compartments with epithelial cells are essential for mammary gland development and homeostasis. Currently, the direct crosstalk between the endothelial niche and mammary epithelial cells remains poorly understood. Here, we show that faciogenital dysplasia 5 (FGD5) is enriched in mammary basal cells (BCs) and mediates critical interactions between basal and endothelial cells (ECs) in the mammary gland. Conditional deletion of Fgd5 reduced, whereas conditional knockin of Fgd5 increased, the engraftment and expansion of BCs, regulating ductal morphogenesis in the mammary gland. Mechanistically, murine mammary BC-expressed FGD5 inhibited the transcriptional activity of activating transcription factor 3 (ATF3), leading to subsequent transcriptional activation and secretion of CXCL14. Furthermore, activation of CXCL14/CXCR4/ERK signaling in primary murine mammary stromal ECs enhanced the expression of HIF-1α-regulated hedgehog ligands, which initiated a positive feedback loop to promote the function of BCs. Collectively, these findings identify functionally important interactions between BCs and the endothelial niche that occur through the FGD5/CXCL14/hedgehog axis.

6.
Environ Pollut ; 355: 124202, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788994

RESUMEN

The characteristics of dissolved organic matter (DOM) serve as indicators of nitrate pollution in groundwater. However, the specific DOM components associated with nitrate in groundwater systems remain unclear. In this study, dual isotopes of nitrate, three-dimensional Excitation emission matrices (EEMs) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were utilized to uncover the sources of nitrate and their associations with DOM characteristics. The predominant nitrate in the targeted aquifer was derived from soil organic nitrogen (mean 46.0%) and manure &sewage (mean 34.3%). The DOM in nitrate-contaminated groundwater (nitrate-nitrogen >20 mg/L) exhibited evident exogenous characteristics, with a bioavailable content 2.58 times greater than that of uncontaminated groundwater. Regarding the molecular characteristics, DOM molecules characterized by CHO + 3N, featuring lower molecular weights and H/C ratios, indicated potential for mineralization, while CHONS formulas indicated the exogenous features, providing the potential for accurate traceability. These findings provided insights at the molecular level into the characterization of DOM in nitrate-contaminated groundwater and offer scientific guidance for decision-making regarding the remediation of groundwater nitrate pollution.

7.
J Invertebr Pathol ; 204: 108115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719180

RESUMEN

To explore the relationship between the intestinal flora of Exopalaemon Carinicauda and infection by Enterocytozoo Hepatopenaei (EHP), we analyzed the species and richness of gut microbiota in infected individuals in different EHP load groups [i.e., control (C), high load (H), and low load (L)] using gene sequencing after infection. The results showed that the abundance of intestinal flora in the high-load EHP group was significantly lower than that in the healthy group. Based on the UPGMA cluster tree and PCoA analysis, with comparisons to healthy shrimp, the gut microbiota of the EHP high load and low load groups were clustered into one branch, which indicated that EHP infection changed the composition of the gut microbiota of infected shrimps. The heat map analysis of species abundance clustering revealed that the dominant bacteria in the low EHP load group and the control group were beneficial genera such as Lactococcus, Ligilactobacillius, and Bifidobacterium, but the dominant bacteria in the high EHP load group were harmful genera such as Pseudomonas, Photobacterium, and Candidatus hepatincola. The functions of the intestinal flora predicted that most genes related to metabolism were more abundant in healthy shrimp, most genes related to metabolism and the organisms' system were more abundant in the low EHP load group, and most genes related to diseases and environmental information processing were more abundant in the high EHP load group. After separation and purification, the dominant bacteria (Bifidobacterium animalis in healthy shrimp and Lactococcus garvieae in the low EHP load group) and the non-dominant bacteria (Macrococus caseolyticus in the low EHP load group) were obtained. Each of these isolated strains were used together with EHP to infect E. carinicauda, and the results showed that Bifidobacterium animali and Lactococcus garvieae significantly reduced the EHP load in EHP-infected individuals. At the same time, the morphology and structure of the hepatopancreas and intestinal tissue of EHP-infected E. carinicauda were improved. No improvement was seen in tissue that was infected with Macrococus caseolyticus.


Asunto(s)
Enterocytozoon , Microbioma Gastrointestinal , Palaemonidae , Animales , Palaemonidae/microbiología , Enterocytozoon/genética , Enterocytozoon/fisiología , Penaeidae/microbiología
8.
Oncol Res ; 32(4): 769-784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560569

RESUMEN

Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival. The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect. To improve the treatment efficacy, we developed Pluronic P123 (P123)-based polymeric micelles dually decorated with alendronate (ALN) and cancer-specific phage protein DMPGTVLP (DP-8) for targeted drug delivery to breast cancer bone metastases. Doxorubicin (DOX) was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity (3.44%). The DOX-loaded polymeric micelles were spherical, 123 nm in diameter on average, and exhibited a narrow size distribution. The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release. The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells. Rapid binding of the micelles to hydroxyapatite (HA) microparticles indicated their high affinity for bone. P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model. In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity. In conclusion, our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Neoplasias de la Mama , Poloxaleno , Humanos , Femenino , Micelas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ligandos , Calidad de Vida , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Polímeros/química , Polímeros/uso terapéutico , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias Óseas/tratamiento farmacológico , Alendronato/farmacología , Alendronato/química , Alendronato/uso terapéutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico
9.
Pharmaceutics ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675192

RESUMEN

Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug delivery systems have emerged as a focal point of research and development, due to their exceptional traits, including precise targeting, low toxicity, and good biocompatibility. This review outlines the categorization and advantages of cell membrane bionic nano-delivery systems, provides an introduction to preparation methods, and assesses their applications in cancer treatment, including chemotherapy, gene therapy, immunotherapy, photodynamic therapy, photothermal therapy, and combination therapy. Notably, the review delves into the challenges in the application of various cell membrane bionic nano-delivery systems and identifies opportunities for future advancement. Embracing cell membrane-coated biomimetic nanoparticles presents a novel and unparalleled avenue for personalized tumor therapy.

10.
Heliyon ; 10(6): e27897, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524584

RESUMEN

This study developed an online solid-phase extraction ultra-high performance liquid chromatography-tandem mass spectrometry (Online-SPE-UHPLC-MS/MS) method for the analysis of 28 illegal drugs in sewage. To achieve this, 28 isotope internal standards (ISTDs) were added to 3 mL sewage samples, the pH was adjusted to 7-8 using hydrochloric acid or 20% ammonia water, followed by centrifugation, filtration, and analysis using UHPLC-MS/MS. The results indicated an excellent linearity of 1-300 ng L-1, and cotinine in the concentration range of 20-6000 ng L-1, linear correlation coefficient R2 > 0.995, with the limit of detection (LOD) of 0.01-6 ng L-1, and a limit of quantification (LOQ) of 0.1-20 ng L-1. The addition of three concentrates of low (2 ng L-1/40 ng L-1), medium (20 ng L-1/400 ng L-1), and high concentration (200 ng L-1/4000 ng L-1) demonstrated the matrix effect of the target compound between ± 22.0%. The extraction recovery was 70.0-119.4%, and a percent accuracy of 75.7-118.1%. Similarly, the intra- and inter-day precisions were 1.8-20.0% and 1.5-18.9%, respectively. The results cemented the sensitivity, accuracy, reliability, strong specificity, and reproducibility, which can be used to screen 28 illegal drugs in sewage for trace analysis.

11.
Animals (Basel) ; 14(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473070

RESUMEN

With the increase in breeding density of Exopalaemon carinicauda, appendage breakage may occur, which seriously affects survival and economic benefits. To study the limb regeneration process of E. carinicauda, we induced autotomy of the pereopods. After a period of time, wound swelling disappeared, the pigment gradually accumulated, and a tawny film subsequently formed in the wound. The healing period of the wound occurred 24 h after autotomy, and the blastema formation stage occurred 48 h after autotomy. After 4 days of cutting, the limb buds began to differentiate, grow, and expand rapidly, and this process lasted approximately 15 days. Microscopic observations revealed significant changes in the type and number of associated cells including outer epithelial cells, granulocytes, embryonic cells, columnar epidermal cells, elongated cells, and blastoma cells, during the process from limb fracture to regeneration. A comparative transcriptome analysis identified 1415 genes differentially expressed between the J0h (0 h post autotomy) and J18h (18 h post autotomy), and 3952 and 4366 differentially expressed genes for J0 and J14d (14 days post autotomy) and J18h and J14d, respectively. Some of these genes may be related to muscle growth or molting, as indicated by the presence of troponin C, chitinase, actin, innexin, and cathepsin L. As a functional gene involved in epidermal formation, the mRNA expression level of the innexin inx2 in the pereopod of E. carinicauda changed significantly in the experimental groups (p < 0.05). The results of this study contribute to existing knowledge of regeneration mechanisms in crustaceans.

12.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555671

RESUMEN

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Hidrocarburos , Petróleo , Serratia , Microbiología del Suelo , Contaminantes del Suelo , Serratia/metabolismo , Serratia/genética , Contaminantes del Suelo/metabolismo , Carbón Orgánico/química , Petróleo/metabolismo , Hidrocarburos/metabolismo , Contaminación por Petróleo , Suelo/química
13.
Plant Signal Behav ; 19(1): 2332018, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38511566

RESUMEN

Tomato (Solanum lycopersicum L.) is one of the most important economic crops in China. However, its quality and yield are susceptible to the adverse effects of low temperatures. In our study, two tomato cultivars, showing different tolerance to low temperatures, namely the cold-sensitive tomato cultivar (S708) and cold-tolerant tomato cultivar (T722), were grown at optimal (25/18°C) and sub-optimal (15/10°C) temperature conditions for 5 days. Our study aimed to explore the effect of sub-optimal temperature on fresh weight, chlorophyll content and chlorophyll fluorescence, soluble sugars and proline content of two tomato cultivars. Moreover, we employed RNA-Seq to analyze the transcriptomic response of tomato roots to sub-optimal temperature. The results revealed that S708 showed a more significant reduction in fresh weight, chlorophyll content, photochemical efficiency of PSII (YII), maximum quantum yield of PSII (Fv/Fm), photochemical quenching (qP) and electron transport rate (ETR) compared to T722 under the sub-optimal temperature condition. Notably, T722 maintained higher level of soluble sugars and proline in comparison to S708 uner sub-optimal temperature. RNA-seq data showed that up-regulated DEGs in both tomato cultivars were involved in "plant-pathogen interaction", "MAPK signaling pathway", "plant hormone signal transduction", and "phosphatidylinositol signaling system". Furthermore, "Amino sugar and nucleotide sugar metabolism" pathway was enriched only in T722. Moreover, under sub-optimal temperature, transcription factor genes and osmoregulation genes showed varying degrees of response in both tomato cultivars. Conclusion: In summary, our results offer detailed insights into the response characteristics of tomato to sub-optimal temperature, providing valuable references for the practical management of tomato crops under sub-optimal temperature condition.


Asunto(s)
Solanum lycopersicum , Temperatura , Solanum lycopersicum/genética , Clorofila/metabolismo , Prolina/metabolismo , Perfilación de la Expresión Génica , Azúcares , Estrés Fisiológico/genética , Fotosíntesis
14.
Front Oncol ; 14: 1346225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425343

RESUMEN

Objectives: To evaluate the effects of platinum-based neoadjuvant chemotherapy (NACT) on the STING/IFN pathway and tumor-infiltrating lymphocytes (TILs) in non-small cell lung cancer (NSCLC), as well as clinicopathological factors affecting patient survival. Materials and methods: A total of 68 patients aged 34-77 years with NSCLC who received neoadjuvant chemotherapy and surgical treatment from March 2012 to February 2019 were reviewed, and the clinical pathological data and paired tissue specimens before and after NACT were collected. Immunohistochemistry and immunofluorescence were used to detect the protein levels of STING, PD-L1 and IFN-ß, and the infiltration density of CD3+ TILs and CD8+TILs. The correlation between the expression of STING, PD-L1, IFN-ß and the infiltration density of CD3+ TILs and CD8+ TILs as well as the clinicopathological characteristics before and after NACT was analyzed. The relationship between the related indexes, clinicopathological features and prognosis was also discussed. Results: NACT increased the expression of STING, IFN-ß and PD-L1 in tumor cells, and the infiltration of CD3+ and CD8+ TILs. In addition, ypTNM stage, ypN stage, changes in CD3+ TILs and in PD-L1 were associated with DFS (disease-free survival). CD3+ TILs changes and ypN stage were associated with OS (overall survival). Notably, ypN stage and CD3+ TILs changes were independent prognostic factors for DFS and OS. Conclusion: NACT stimulates STING/IFN-ß pathway, promotes infiltration of CD3+ and CD8+ TILs, triggers innate and adaptive immunity, and also upregulates PD-L1, which complemented the rationale for neoadjuvant chemotherapy in combination with immunotherapy. In addition, DFS was longer in patients with ypTNM I, ypN0-1, and elevated CD3+TILs after NACT. Patients with ypN0 and elevated CD3+ TILs after NACT had better OS benefits.

15.
Front Microbiol ; 15: 1319895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343715

RESUMEN

In recent years, the problems associated with continuous cropping (CC) that cause soil degradation have become increasingly serious. As a key soil quality property, dissolved organic matter (DOM) affects the circulation of carbon and nutrients and the composition of bacterial communities in soil. However, research on the changes in the molecular composition of DOM after CC is limited. In this study, the soil chemical properties, DOM chemical diversity, bacterial community structure, and their interactions are explored in the soil samples from different CC years (CC1Y, CC3Y, CC5Y, and CC7Y) of tobacco. With increasing CC year of tobacco, most of the soil chemical properties, such as total carbon, total nitrogen and organic matter, decreased significantly, while dissolved organic carbon first decreased and then increased. Likewise, the trends of DOM composition differed with changing duration of CC, such as the tannin compounds decreased from 18.13 to 13.95%, aliphatic/proteins increased from 2.73 to 8.85%. After 7 years of CC, the soil preferentially produced compounds with either high H/C ratios (H/C > 1.5), including carbohydrates, lipids, and aliphatic/proteins, or low O/C ratios (O/C < 0.1), such as unsaturated hydrocarbons. Furthermore, core microorganisms, including Nocardioides, wb1-P19, Aquabacterium, Methylobacter, and Thiobacillus, were identified. Network analysis further indicated that in response to CC, Methylobacter and Thiobacillus were correlated with the microbial degradation and transformation of DOM. These findings will improve our understanding of the interactions between microbial community and DOM in continuous cropping soil.

16.
Zhongguo Zhong Yao Za Zhi ; 49(2): 315-324, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403307

RESUMEN

Drying is an indispensable processing step for Chinese medicinal materials after harvesting. It often leads to significant changes in the active components of these materials, thus impacting their medicinal values. Understanding the mechanisms behind the changes during the drying process is of great importance for regulating the transformation of key active components. Therefore, this paper reviews the available studies and comprehensively expounds the mechanisms underlying the changes in active components during the drying process. The aim is to offer insights for the development of regulatory strategies and the improvement of drying techniques for Chinese medicinal materials.


Asunto(s)
Medicamentos Herbarios Chinos , Desecación
17.
J Asian Nat Prod Res ; 26(1): 112-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38185895

RESUMEN

Six new iridoid glycosides were isolated from the ethyl acetate fraction of the whole plants of Hedyotis diffusa Willd. They were identified as E-6-O-p-methoxycinnamoyl-10-O-acetyl scandoside acid methyl ester (1), Z-6-O-p-methoxycinnamoyl-10-O-acetyl scandoside acid methyl ester (2), E-6-O-caffeoyl scandoside methyl ester (3), E-6-O-p-coumaroyl-6'-O-acetyl scandoside methyl ester (4), Z-6-O-p-coumaroyl-6'-O-acetyl scandoside methyl ester (5), and E-6-O-p-coumaroyl-4'-O-acetyl scandoside methyl ester (6). The structures of them were elucidated based on unambiguous spectroscopic data (UV, IR, HRESIMS, and NMR). They were screened for anti-inflammatory effect, antioxidant effect, antitumor effect, and neuroprotective effect and did not show potent activities.


Asunto(s)
Ácidos Cumáricos , Hedyotis , Glicósidos Iridoides , Glicósidos Iridoides/farmacología , Hedyotis/química , Antioxidantes , Espectroscopía de Resonancia Magnética , Ésteres , Glicósidos/farmacología
18.
IEEE Trans Biomed Circuits Syst ; 18(1): 39-50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37549076

RESUMEN

Wireless implantable devices are widely used in medical treatment, which should meet clinical constraints such as longevity, miniaturization, and reliable communication. Wireless power transfer (WPT) can eliminate the battery to reduce system size and prolong device life, while it's challenging to generate a reliable clock without a crystal. In this work, we propose a self-adaptive dual-injection-locked-ring-oscillator (dual-ILRO) clock-recovery technique based on two-tone WPT and integrate it into a battery-free neural-recording SoC. The 2[Formula: see text]-order inter-modulation (IM2) component of the two WPT tones is extracted as a low-frequency reference for battery-free SoC, and the proposed self-adaptive dual-ILRO technique extends the lock range to ensure an anti-interference PVT-robust clock generation. The neural-recording SoC includes a low-noise signal acquisition unit, a power management unit, and a backscatter circuit to perform neural signal recording, wireless power harvesting, and neural data transmission. Benefiting from the 6.4 µW low power of the clock recovery circuit, the overall SoC power is cut down to 49.8 µW. In addition, the proposed clock-recovery technique enables both signal acquisition and uplink communication to perform as well as that synchronized by an ideal clock, i.e., an effective number of 9.6 bits and a bit error rate (BER) less than 4.8 × 10-7 in chip measurement. The SoC takes a die area of 2.05 mm 2, and an animal test is conducted in a Sprague-Dawley rat to validate the wireless neural-recording performance, compared to a crystal-synchronized commercial chip.


Asunto(s)
Prótesis e Implantes , Tecnología Inalámbrica , Ratas , Animales , Ratas Sprague-Dawley , Diseño de Equipo , Suministros de Energía Eléctrica
19.
Neurochem Res ; 49(3): 636-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37989895

RESUMEN

Hallucinogenic 5-HT2A receptor (5-HT2AR) agonists-induced head-twitch response (HTR) is regulated by Gs signaling pathway. Formation of heterodimers between 5-HT2AR and metabotropic glutamate mGlu2 receptor (mGluR2) is essential for the hallucinogenic 5-HT2AR agonist-induced HTR. In order to investigate the effects of mGluR2 agonists and inverse agonists on hallucinogenic 5-HT2AR agonists DOM-induced HTR, C57BL/6 mice were pretreated with mGluR2 agonists (LY379268, LY354740, LY404039) or the inverse agonist LY341495, and the HTR was manually counted after administering DOM immediately. IP-One (IP1) HTRF assay and cAMP assay were performed to evaluate the effect of LY341495 or LY354740 on DOM-induced Gq and Gs activation in Human Embryonic Kidney-293 (HEK-293) T-type cells co-expressing 5-HT2AR and mGluR2. The results showed that DOM-induced HTR in mice was dose-dependently inhibited by LY379268, LY354740, and LY404039, while it was dose-dependently enhanced by LY341495. Moreover, LY341495 reversed the inhibitory effect of LY354740 on DOM-induced HTR. In HEK-293T cells co-expressing 5-HT2AR and mGluR2, DOM-induced cAMP level was decreased by LY354740 and increased by LY341495, but DOM-induced IP1 level was not regulated by LY354740 or LY341495. The regulation of DOM-induced HTR by mGluR2 agonists and inverse agonists is closely related to 5-HT2AR-mediated Gs signaling pathway. In HEK-293T cells co-expressing 5-HT2AR and mGluR2 A677S/A681P/A685G mutant (mGluR2 3 A mutant), DOM-induced cAMP level was not regulated by LY354740, but was significantly enhanced by LY341495. The 5-HT2AR/mGluR2 heterodimers is critical for DOM-induced HTR and cAMP level, both of which are inhibited by mGluR2 agonists and enhanced by mGluR2 inverse agonists.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Compuestos Bicíclicos con Puentes , Óxidos S-Cíclicos , Agonismo Inverso de Drogas , Receptores de Glutamato Metabotrópico , Serotonina , Ratones , Humanos , Animales , Células HEK293 , Ratones Endogámicos C57BL , Transducción de Señal
20.
J Neural Transm (Vienna) ; 131(2): 127-139, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923936

RESUMEN

Autonomic dysfunction (AutD) is common and debilitating in Parkinson's disease (PD). Predictors of AutD are unclear, and data are limited on the biological relevance of AutD in PD. Here, we evaluated the baseline prevalence and 2-year longitudinal assessment of AutD in patients with de novo PD compared with healthy controls (HC). Moreover, we also assessed various variables that could predict longitudinal changes in AutD in early PD. Parkinson's Progression Markers Initiative (PPMI) was utilized to evaluate untreated PD participants at baseline and HC. Autonomic function was assessed using the 25-item Scale for Outcomes in Parkinson's Disease-Autonomic (SCOPA-AUT) score at baseline and 2 years. Clinical and biological variables were measured for their correlations with AuD for up to 2 years. Two hundred and ninety PD subjects and 170 HC were enrolled and followed for 2 years. SCOPA-AUT mean (SD) scores increased from baseline 8.49 ± 5.23 to 10.12 ± 5.77 at year 2 in PD subjects (p < 0.001) versus from 4.98 ± 3.34 to 5.03 ± 374 in HC (p = 0.496), with a significant difference between the groups (p < 0.001). Among them, 242 PD participants and 151 HC completed the SCOPA-AUT assessment, including sexual function. In the multivariate analysis, a higher baseline SCOPA-AUT score was associated with higher baseline MDS-UPDRS Part I scores (p < 0.001). Moreover, a longitudinal increase in autonomic function severity was associated with the white race (p = 0.010) at baseline. In contrast, there was no association with the CSF biomarkers. MDS-UPDRS Part I score may predict AuD in patients with early PD, which is correlated with nonmotor symptoms and race.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiología , Prevalencia , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/epidemiología , Enfermedades del Sistema Nervioso Autónomo/etiología , Sistema Nervioso Autónomo , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA