Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Hypertens Res ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117946

RESUMEN

Recent evidence suggests that necroptosis may contribute to the development of kidney injury. Renalase is a novel secretory protein that exerts potent prosurvival and anti-inflammatory effects. We hypothesized that renalase could protect the kidney from salt-induced injury by modulating necroptosis. High salt and renalase treatments were administered to Dahl salt-sensitive (SS) rats, renalase knockout (KO) mice, and HK-2 cells. Furthermore, a cohort of 514 eligible participants was utilized to investigate the association between single nucleotide polymorphisms (SNPs) in the genes RIPK1, RIPK3, and MLKL, and the risk of subclinical renal damage (SRD) over 14 years. A high-salt diet significantly increased the expression of key components of necroptosis, namely RIPK1, RIPK3, and MLKL, as well as the release of inflammatory factors in SS rats. Treatment with recombinant renalase reduced both necroptosis and inflammation. In renalase KO mice, salt-induced kidney injury was more severe than in wild-type mice, but supplementation with renalase attenuated the kidney injury. In vitro experiments with HK-2 cells revealed high salt increased necroptosis and inflammation. Renalase exhibited a dose-dependent decrease in salt-induced necroptosis, and this cytoprotective effect was negated by the knockdown of PMCA4b, which is the receptor of renalase. Furthermore, the cohort study showed that SNP rs3736724 in RIPK1 and rs11640974 in MLKL were significantly associated with the risk of SRD over 14 years. Our analysis shows that necroptosis plays a significant role in the development of salt-induced kidney injury and that renalase confers its cytoprotective effects by inhibiting necroptosis and inflammation.

2.
Nanoscale Horiz ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135517

RESUMEN

Metamaterials have demonstrated significant potential for enhancing nonlinear processes at the nanoscale. The presence of narrowband hot-spots and highly inhomogeneous mode-field distributions often limit the enhancement of nonlinear interactions over larger spatial scales. This has posed a formidable challenge in achieving simultaneous enhancement across a broadband spectral range, significantly constraining the potential of photonic nanostructures in enhancing nonlinear frequency conversion. Here, we propose a broadband resonant mode matching method through near-field examinations that supports the multipole modes and enables the development of an ultrabroadband-enhanced 3-5 µm mid-infrared frequency upconversion technique utilizing a hyperbolic triangular pyramidal metasurface. The gap-plasma mode of the hyperbolic metamaterial multilayer system excites narrowly high-order resonances at near-infrared pump light wavelengths, while the slow-light effect generated by the dipoles achieves ultrabroadband near-field enhancement at mid-infrared wavelengths. The symmetry breaking of the triangular structure localizes these resonant modes at the tips, enabling mode-matched modulation at different wavelengths, and thus boosting the nonlinear frequency conversion process. Our approach provides a promising platform for metasurface-based frequency conversion techniques.

3.
World J Clin Cases ; 12(19): 3752-3759, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994321

RESUMEN

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is a common mental and behavioral disorder among children. AIM: To explore the focus of attention deficit hyperactivity disorder parents and the effectiveness of early clinical screening. METHODS: This study found that the main directions of parents seeking medical help were short attention time for children under 7 years old (16.6%) and poor academic performance for children over 7 years old (12.1%). We employed a two-stage experiment to diagnose ADHD. Among the 5683 children evaluated from 2018 to 2021, 360 met the DSM-5 criteria. Those diagnosed with ADHD underwent assessments for letter, number, and figure attention. Following the exclusion of ADHD-H diagnoses, the detection rate rose to 96.0%, with 310 out of 323 cases identified. RESULTS: This study yielded insights into the primary concerns of parents regarding their children's symptoms and validated the efficacy of a straightforward diagnostic test, offering valuable guidance for directing ADHD treatment, facilitating early detection, and enabling timely intervention. Our research delved into the predominant worries of parents across various age groups. Furthermore, we showcased the precision of the simple exclusion experiment in discerning between ADHD-I and ADHD-C in children. CONCLUSION: Our study will help diagnose and guide future treatment directions for ADHD.

4.
Sensors (Basel) ; 24(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39001167

RESUMEN

In the field of wireless strain monitoring, it is difficult for the traditional metal-made antenna sensor to conform well with steel structures and monitor large strain deformation. To solve this problem, this study proposes a flexible antenna strain sensor based on a ductile graphene film, which features a 6.7% elongation at break and flexibility due to the microscopic wrinkle structure and layered stacking structure of the graphene film. Because of the use of eccentric embedding in the feeding form, the sensor can be miniaturized and can simultaneously monitor strain in two directions. The sensing mechanism of the antenna is analyzed using a void model, and an antenna is designed based on operating frequencies of 3 GHz and 3.5 GHz. The embedding size is optimized using a Smith chart and impedance matching principle. Both the simulation and experimental results verify that the resonant frequency and strain magnitude are linearly inversely proportional. The experimental results show that the strain sensitivity is 1.752 kHz/µÎµ along the geometric length and 1.780 kHz/µÎµ along the width, with correlation coefficients of 0.99173 and 0.99295, respectively.

6.
Dalton Trans ; 53(29): 12370-12380, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38993174

RESUMEN

The residue of antibiotics and various pollutants has led to an urgent issue in environmental pollution control. In this study, we constructed an S-scheme P-TiO2@Zn-MOF heterojunction by self-assembling phosphonate-based MOFs on mesoporous phosphate-TiO2 beads. Compared to monomers, the P-TiO2@Zn-MOF2.0 heterojunction exhibits significantly higher photocatalytic activity for the photo-oxidative degradation of ciprofloxacin (97.2% in 60 min) and tetracyclic (TC) (94.5% in 100 min) and the photo-reduction of Cr(VI) (92.7% in 60 min) under simulated sunlight. Experimental results and calculations revealed the effective separation and transfer of photogenerated carriers at the P-TiO2@Zn-MOF2.0 S-scheme heterojunction interface, enabling the formation of highly active superoxide and hydroxyl radicals. Furthermore, the hybrid maintained excellent Cr(VI) photoreduction performance after recycling tests in actual electroplating industry wastewater at a strongly acidic pH.

7.
Angew Chem Int Ed Engl ; : e202412977, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079914

RESUMEN

Perylene diimides (PDIs) have garnered considerable attention due to its immense potential in photocatalysis. However, manipulating the molecular packing within their aggregates and enhancing the efficiency of photogenerated carrier recombination remain significant challenges. In this study, we demonstrate the incorporation of a PDI unit into a covalent organic framework (COF), named PDI-PDA, by linking an ortho-substituted PDI with p-phenylenediamine (PDA) to control its intermolecular aggregation. The incorporation enables precise modulation of electron transfer dynamics, leading to a ten-fold increase in the efficiency of photocatalytic oxidation of thioether to sulfoxide with PDI-PDA compared to the PDI molecular counterpart, achieving yields exceeding 90%. Electron property studies and density functional theory calculations show that the PDI-PDA with its well-defined crystal structure, enhances π-π stacking and lowers the electron transition barrier. Moreover, the strong electron-withdrawing ability of the PDI unit promotes the spatial separation of the valency band maximum and conduction band minimum of PDI-PDA suppressing the rapid recombination of photogenerated electron-hole pairs and improving charge separation efficiency to give high photocatalytic efficiency. This study provides a brief yet effective way for the improvement of the photocatalytic efficiency of commonly used PDI-based dyes by integrating them into a framework skeleton.

8.
Mol Cell Proteomics ; : 100821, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069074

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) has poor prognosis and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 iCCA patients, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.

10.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078241

RESUMEN

Given the lack of sufficient historical data for aircraft landing gear retractor systems, a model-based fault diagnosis approach is needed to overcome this data deficiency. Meanwhile, inherent uncertainties are inevitable in engineering practice, and it is a great challenge to construct a model that accurately reflects the complexity of the actual system under uncertain conditions. Due to the urgent need for reliable model-based diagnostic methods and the need to cope with inherent uncertainties, this paper proposes an improved fault diagnostic method aimed at increasing the diagnostic efficiency of the landing gear retractor system, a critical component in aircraft take-off and landing operations. Due to a lack of historical data, the model-based fault diagnosis method can solve the problem of lack of data. The proposed uncertainty method addresses the challenge of multiple sources of uncertainty by using subsystems to reduce complexity. Fault diagnosis is achieved by comparing residuals with thresholds derived from a diagnostic bond graph (DBG) model. To address the problem of limited fault data, we modeled and simulated the landing gear retractor system using AMESim®. In addition, the linear fractional transform (LFT) approach has been used to resolve parametric uncertainties, but is unable to resolve system structural uncertainties. Therefore, we also analyzed the comparative fault diagnosis results derived from the linear fractional transformation-DBG (LFT-DBG) and the subsystem-DBG approaches. The experimental results support the effectiveness of the subsystem approach in improving fault diagnosis accuracy and reliability, highlighting its potential as a viable diagnostic strategy in aerospace engineering applications.

11.
Fundam Res ; 4(1): 131-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933849

RESUMEN

Solar-driven CO2-to-fuel conversion assisted by another major greenhouse gas CH4 is promising to concurrently tackle energy shortage and global warming problems. However, current techniques still suffer from drawbacks of low efficiency, poor stability, and low selectivity. Here, a novel nanocomposite composed of interconnected Ni/MgAlO x nanoflakes grown on SiO2 particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO2-to-fuel conversion. An ultrahigh light-to-fuel efficiency up to 35.7%, high production rates of H2 (136.6 mmol min-1g- 1) and CO (148.2 mmol min-1g-1), excellent selectivity (H2/CO ratio of 0.92), and good stability are reported simultaneously. These outstanding performances are attributed to strong metal-support interactions, improved CO2 absorption and activation, and decreased apparent activation energy under direct light illumination. MgAlO x @SiO2 support helps to lower the activation energy of CH* oxidation to CHO* and improve the dissociation of CH4 to CH3* as confirmed by DFT calculations. Moreover, the lattice oxygen of MgAlO x participates in the reaction and contributes to the removal of carbon deposition. This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency, high selectivity, and benign sustainability.

12.
Anal Methods ; 16(24): 3839-3846, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38829181

RESUMEN

The level of sulfur dioxide (SO2) and viscosity in mitochondria play vital roles in various physiological and pathological processes. Abnormalities in mitochondrial SO2 and viscosity are closely associated with numerous biological diseases. It is of great significance to develop novel fluorescence probes for simultaneous detection of SO2 and viscosity within mitochondria. Herein, we have developed a water-soluble, mitochondrial-targeted and near-infrared fluorescent probe, CMBT, for the simultaneous detection of SO2 and viscosity. The probe CMBT incorporates benzothiazolium salt as a mitochondrial targeting moiety and 7-diethylaminocoumarin as a rotor for viscosity detection, respectively. Based on the prompt reaction between nucleophilic HSO3-/SO32- and the backbone of the benzothiazolium salt derivative, probe CMBT displayed high sensitivity and selectivity toward SO2 with a limit of detection as low as 0.17 µM. As viscosity increased, the twisted intramolecular charge transfer (TICT) process was restricted, resulting in fluorescence emission enhancement at 690 nm. Moreover, probe CMBT demonstrated exceptional mitochondrial targeting ability and was successfully employed to image variations of SO2 and viscosity in living cells and mice. The work highlights the great potential of the probe as a convenient tool for revealing the relationship between SO2 and viscosity in biological systems.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Dióxido de Azufre , Dióxido de Azufre/análisis , Dióxido de Azufre/química , Colorantes Fluorescentes/química , Animales , Mitocondrias/química , Mitocondrias/metabolismo , Viscosidad , Ratones , Humanos , Imagen Óptica/métodos , Células HeLa , Límite de Detección
13.
Cell Death Differ ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862581

RESUMEN

The oncogenic potential of chromosome 8q22 copy number gain in liver cancer remains to be depicted. Here, we report that ZNF706, encoded by a gene mapped to chromosome 8q22, is a C2H2-type zinc finger protein. However, the biological function and mechanism of ZNF706 have been poorly investigated. Clinically, ZNF706 expression was elevated in hepatocellular carcinoma (HCC), and high ZNF706 expression was associated with unfavorable survival in HCC patients. Functional experiments revealed that ZNF706 knockdown inhibited HCC progression both in vitro and in vivo. RNA sequencing (RNA-seq) and chromatin immunoprecipitation-based deep sequencing (ChIP-seq) revealed that mechanistically, ZNF706 is a crucial ferroptosis regulator and that SLC7A11 is a critical target of ZNF706. In addition, ZNF706 knockdown inhibited SLC7A11 expression, increased lipid peroxidation, and promoted ferroptosis. Further analysis revealed that ZNF706 is a novel direct target transcriptionally activated by MYC in HCC cells. Importantly, MYC depletion reduced SLC7A11-mediated redox homeostasis, and this effect was reversed by ZNF706 reexpression. Collectively, our data demonstrate that ZNF706 is a potential oncogene in liver cancer and functions as a ferroptosis regulator by modulating SLC7A11 expression, constituting a potential therapeutic target for HCC.

14.
Anal Bioanal Chem ; 416(20): 4531-4541, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922433

RESUMEN

Glycation is a non-enzymatic posttranslational modification coming from the reaction between reducing sugars and free amino groups in proteins, where early glycation products (fructosyl-lysine, FL) and advanced glycation end products (AGEs) are formed. The occurrence of glycation and accumulation of AGEs have been closely associated with hepatocellular carcinoma (HCC). Here, we reported the characterization of differential glycation in HCC using tissue proteomics with stable isotopic labeling; early glycation-modified peptides were enriched with boronate affinity chromatography (BAC), and AGEs-modified peptides were fractionated with basic reversed-phase separation. By this integrated approach, 3717 and 1137 early and advanced glycated peptides corresponding to 4007 sites on 1484 proteins were identified with a false discovery rate (FDR) of no more than 1%. One hundred fifty-five sites were modified with both early and advanced end glycation products. Five early and 7 advanced glycated peptides were quantified to be differentially expressed in HCC tissues relative to paired adjacent tissues. Most (8 out of 10) of the proteins corresponding to the differential glycated peptides have previously been reported with dysregulation in HCC. The results together may deepen our knowledge of glycation as well as provide insights for therapeutics.


Asunto(s)
Carcinoma Hepatocelular , Productos Finales de Glicación Avanzada , Marcaje Isotópico , Neoplasias Hepáticas , Proteómica , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/química , Humanos , Proteómica/métodos , Glicosilación , Marcaje Isotópico/métodos , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/química , Espectrometría de Masas en Tándem/métodos , Masculino , Persona de Mediana Edad
15.
Adv Mater ; 36(33): e2406623, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899799

RESUMEN

Morphology control is crucial in achieving high-performance organic solar cells (OSCs) and remains a major challenge in the field of OSC. Solid additive is an effective strategy to fine-tune morphology, however, the mechanism underlying isomeric solid additives on blend morphology and OSC performance is still vague and urgently requires further investigation. Herein, two solid additives based on pyridazine or pyrimidine as core units, M1 and M2, are designed and synthesized to explore working mechanism of the isomeric solid additives in OSCs. The smaller steric hindrance and larger dipole moment facilitate better π-π stacking and aggregation in M1-based active layer. The M1-treated all-small-molecule OSCs (ASM OSCs) obtain an impressive efficiency of 17.57%, ranking among the highest values for binary ASM OSCs, with 16.70% for M2-treated counterparts. Moreover, it is imperative to investigate whether the isomerization engineering of solid additives works in state-of-the-art polymer OSCs. M1-treated D18-Cl:PM6:L8-BO-based devices achieve an exceptional efficiency of 19.70% (certified as 19.34%), among the highest values for OSCs. The work provides deep insights into the design of solid additives and clarifies the potential working mechanism for optimizing the morphology and device performance through isomerization engineering of solid additives.

16.
Curr Probl Cardiol ; 49(7): 102631, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729278

RESUMEN

Aortic stenosis (AS) is very common in mid-aged and elderly patients, and it has been reported to have a negative impact on both short and long-term survival with a high mortality rate. The current study identified methods of diagnosis, incidence, and causes of AS, pathogenesis, intervention and management and future perspectives of Asymptomatic and Symptomatic Aortic stenosis. A systematic literature search was conducted using PubMed, Scopus and CINAHL, using the Mesh terms and key words "Aortic stenosis", "diagnostic criteria", "pathogenesis", "incidence and causes of AS" and" intervention and management strategies". Studies were retained for review after meeting strict inclusion criteria that included studies evaluating Asymptomatic and Symptomatic AS. Studies were excluded if duplicate publication, overlap of patients, subgroup studies of a main study, lack of data on AS severity, case reports and letters to editors. Forty-five articles were selected for inclusion. Incidence of AS across the studies ranged from 3 % to 7 %. Many factors have been associated with incidence and increased risk of AS, highest incidence of AS was described after aortic valve calcification, rheumatic heart disease, degenerative aortic valve disease, bicuspid aortic valve and other factors. AS is common and can be predicted by aortic root calcification volume, rheumatic heart disease, degenerative aortic valve disease, bicuspid aortic valve. Intervention and management for AS patients is a complex decision that takes into consideration multiple factors. On the other hand, there is not enough progress in preventive pharmacotherapy to slow the progression of AS.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedades Asintomáticas , Humanos , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/epidemiología , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/terapia , Enfermedades Asintomáticas/terapia , Manejo de la Enfermedad , Incidencia , Factores de Riesgo
17.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732963

RESUMEN

In engineering measurements, metal foil strain gauges suffer from a limited range and low sensitivity, necessitating the development of flexible sensors to fill the gap. This paper presents a flexible, high-performance piezoresistive sensor using a composite consisting of graphene nanoplatelets (GNPs) and polydimethylsiloxane (PDMS). The proposed sensor demonstrated a significantly wider range (97%) and higher gauge factor (GF) (6.3), effectively addressing the shortcomings of traditional strain gauges. The microstructure of the GNPs/PDMS composite was observed using a scanning electron microscope, and the distribution of the conductive network was analyzed. The mechanical behavior of the sensor encapsulation was analyzed, leading to the determination of the mechanisms influencing encapsulation. Experiments based on a standard equal-strength beam were conducted to investigate the influence of the base and coating dimensions of the sensor. The results indicated that reducing the base thickness and increasing the coating length both contributed to the enhancement of the sensor's performance. These findings provide valuable guidance for future development and design of flexible sensors.

18.
J Mater Chem B ; 12(21): 5157-5161, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38715545

RESUMEN

The ability to detect and visualize cellular events and associated biological analytes is essential for the understanding of their physiological and pathological functions. Cysteine (Cys) plays a crucial role in biological systems and lysosomal homeostasis. This puts forward higher requirements on the performance of the probe. Herein, we rationally designed a coumarin-based probe for the reversible, specific, sensitive, and rapid detection of Cys based on pH regulating reactivity. The obtained probe (ECMA) introduces a morpholine moiety to target lysosomes, and α,ß-unsaturated-ketone with an electron-withdrawing CN group served as a reversible reaction site for Cys. Importantly, ECMA was successfully applied to the real-time monitoring of Cys dynamics in living cells. Furthermore, cell imaging clearly revealed that exogenous Cys could induce the up-regulation of lysosomal ROS, which provided a powerful tool for investigating the relationship between oxidative stress and lysosomal Cys.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Lisosomas , Estrés Oxidativo , Lisosomas/metabolismo , Lisosomas/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cisteína/química , Cisteína/metabolismo , Estrés Oxidativo/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Células HeLa , Imagen Óptica , Estructura Molecular , Cumarinas/química , Especies Reactivas de Oxígeno/metabolismo
19.
Insect Sci ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769890

RESUMEN

Given the limited availability of resources in nature, sexual attractiveness may trade off with immunocompetence, as the immunocompetence handicap hypothesis (ICHH) posits. In invertebrates, a direct link between trade-offs through hormonal/molecular effectors in sexual signals and immunity has not been found so far. Here, we assessed how variation in sexual signals affected parasite infection in two sex pheromone selected lines of the moth Chloridea virescens: an attractive line with a low ratio of 16:Ald/Z11-16:Ald and an unattractive line with a high ratio. When infecting these lines with an apicomplexan parasite, we found that the attractive Low line was significantly more susceptible to the parasite infection than the unattractive High line. Since the ratio difference between these two lines is determined by a delta-11-desturase, we hypothesized that this desaturase may have a dual role, i.e., in the quality of the sexual signal as well as an involvement in immune response, comparable to testosterone in vertebrates. However, when we used CRISPR/cas9 to knockout delta-11-desturase in the attractive Low line, we found that the pheromonal phenotype did change to that of the High line, but the infection susceptibility did not. Notably, when checking the genomic location of delta-11-desaturase in the C. virescens, we found that mucin is adjacent to delta-11-desaturase. When comparing the mucin sequences in both lines, we found four nonsynonymous SNPs in the coding sequence, as well as intronic variation between the two lines. These differences suggest that genetic hitchhiking may explain the variation in susceptibility to parasitic infection.

20.
Science ; 384(6695): eadj4857, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696569

RESUMEN

B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell-receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell-driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell-targeting immunotherapy.


Asunto(s)
Linfocitos B , Centro Germinal , Linfocitos Infiltrantes de Tumor , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/genética , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Inmunoterapia , Transcriptoma , Análisis de la Célula Individual , Epigénesis Genética , Inmunidad Humoral , Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA