Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883988

RESUMEN

We proposed a differential fiber-optic refractive index sensor based on coupled plasmon waveguide resonance (CPWR) in the C-band. The sensor head is a BK7 prism coated with ITO/Au/ITO/TiO2 film. CPWR is excited on the film by the S-polarized components of an incident light. The narrow absorption peak of CPWR makes it possible to realize dual-wavelength differential intensity (DI) interrogation by using only one incident point. To implement DI interrogation, we used a DWDM component to sample the lights with central wavelengths of 1529.55 and 1561.42 nm from the lights reflected back by the sensor head. The intensities of the dual-wavelength lights varied oppositely within the measurement range of refractive index, thus, a steep slope was produced as the refractive index of the sample increased. The experimental results show that the sensitivity is 32.15/RIUs within the measurement range from 1.3584 to 1.3689 and the resolution reaches 9.3 × 10-6 RIUs. Benefiting from the single incident point scheme, the proposed sensor would be easier to calibrate in bio-chemical sensing applications. Moreover, this sensing method is expected to be applied to retro-reflecting SPR sensors with tapered fiber tip to achieve better resolution than wavelength interrogation.

2.
Opt Express ; 28(23): 33809-33822, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182861

RESUMEN

We proposed a differential fiber-optic SPR remote sensor with ultra-high sensitivity in telecom band. The working band of the sensor is designed as the C-band which is the low loss band of optical fiber communication aiming to improve the sensitivity and enable the capability of remote monitoring. The sensor head is a BK7 prism coated with Au/TiO2 films, enabling two channels for differential intensity interrogation. The intensities of the reflected lights through the channels vary oppositely within the measurement range of refractive index. Due to the sharp dip of angular resonant response in the C-band, the differential signal produces a steep slope as the refractive index of the sample varies, thus higher sensitivity is expected in a narrow measurement range. According to the results, the sensitivity is as high as 456 V/RIUs within the narrow measurement range of 1.3×10-2 RIUs and the resolution reaches to 6×10-6 RIUs. The measurement range can be tuned conveniently by adjusting the thickness of TiO2 film and can be expanded by increasing the number of sensing channels, which provides great convenience for the application of biosensor requiring high sensitivity.

3.
Nanoscale ; 12(36): 18987, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32658232

RESUMEN

Correction for 'Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles' by Laixu Gao et al., Nanoscale, 2020, DOI: .

4.
Nanoscale ; 12(36): 18595-18599, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32555904

RESUMEN

Volumetric displays that create bright image points within a transparent bulk are one of the most attractive technologies in everyday life. Lanthanide ion doped upconversion nanoparticles (UCNPs) are promising luminescent nanomaterials for background free, full-colour volumetric displays of transparent bulk materials. However, video-rate display using UCNPs has been limited by their low emission intensity. Herein, we developed a video-rate upconversion display system with much enhanced brightness. The integral emission intensity of the single UCNPs was fully employed for video-rate display. It was maximized by optimizing the emitter concentration and, more importantly, by temporally synchronizing the scanning time of the excitation light to the the raised emission time of the single UCNPs. The excitation power dependent emission response and emission time decay curves were systematically characterized for the single UCNPs with various emitter concentrations from 0.5% to 6%. 1%Tm3+ doped UCNPs presented the highest integral emission intensity. By embedding this UCNPs into a polyvinyl acetate (PVA) film, we achieved a two-dimensional (2D) upconversion display with a frame rate of 29 Hz for 35 by 50 pixels. This work demonstrates that the temporal response as well as the integral emission intensity enable video-rate upconversion display.

5.
Sensors (Basel) ; 18(10)2018 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-30248984

RESUMEN

Fiber-optic surface plasmon resonance (SPR) sensors possess the advantages of small size, flexible, allowing for a smaller sample volume, easy to be integrated, and high sensitivity. They have been intensively developed in recent decades. However, the polarizing nature of the surface plasmon waves (SPWs) always hinders the acquisition of SPR spectrum with high signal-noise ratio in wavelength modulation unless a polarizer is employed. The addition of polarizer complicates the system and reduces the degree of compactness. In this work, we propose and demonstrate a novel, polarization-independent fiber-optic SPR sensor based on a BK7 bi-prism with two incident planes orthogonal to each other. In the bi-prism, TM-polarized components of non-polarized incident lights excite SPWs on the first sensing channel, meanwhile the TE components and the remaining TM components are reflected, then the reflected TE components serve as TM components of incident lights for the second sensing channel to excite SPWs. Simulations show the proposed SPR structure permit us to completely eliminate the polarization dependence of the plasmon excitation. Experimental results agree well with the simulations. This kind of devices can be considered an excellent option for development of simple and compact SPR chemical sensors.

6.
Sensors (Basel) ; 17(2)2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28212272

RESUMEN

In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA