Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Microbiol ; 24(1): 287, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095728

RESUMEN

This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.


Asunto(s)
Aeromonas hydrophila , Antioxidantes , Berberina , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas , Berberina/farmacología , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/genética , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Braquiuros/microbiología , Braquiuros/efectos de los fármacos , Malondialdehído/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38718732

RESUMEN

A comprehensive bioinformatics analysis was conducted to elucidate the innate immune response of Charybdis japonica following exposure to Aeromonas hydrophila. This study integrated metabolomics, 16S rRNA sequencing, and enzymatic activity data to dissect the immune mechanisms activated in response to infection. Infection with A. hydrophila resulted in an increased abundance of beneficial intestinal genera such as Photobacterium spp., Rhodobacter spp., Polaribacter spp., Psychrilyobacter spp., and Mesoflavibacter spp. These probiotics appear to suppress A. hydrophila colonization by competitively dominating the intestinal microbiota. Key metabolic pathways affected included fatty acid biosynthesis, galactose metabolism, and nitrogen metabolism, highlighting their role in the crab's intestinal response. Enzymatic analysis revealed a decrease in activities of hexokinase, phosphofructokinase, and pyruvate kinase, which are essential for energy homeostasis and ATP production necessary for stress responses. Additionally, reductions were observed in the activities of acetyl-CoA carboxylase and fatty acid synthase. Gene expression analysis showed downregulation in Peroxiredoxin 1 (PRDX1), Peroxiredoxin 2 (PRDX2), glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH), with concurrent increases in malondialdehyde (MDA) levels, indicating severe oxidative stress. This study provides insights into the molecular strategies employed by marine crabs to counteract bacterial invasions in their natural habitat.


Asunto(s)
Aeromonas hydrophila , Braquiuros , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Aeromonas hydrophila/fisiología , Animales , Braquiuros/microbiología , Braquiuros/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Metabolómica , Microbioma Gastrointestinal , Microbiota
3.
Microorganisms ; 12(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543611

RESUMEN

As an enduring Chinese freshwater aquaculture product, the Eriocheir sinensis has a high economic value and is characterized by a catadromous life style that undergoes seawater-freshwater migration. However, little is known about their gut microbial status as they move from saltwater to freshwater acclimatization. Here, we sampled and cultivated Eriocheir sinensis megalopa from three aquaculture desalination ponds and investigated their gut microbiota diversity, community structures and biotic interactions from megalopa stage to the first juvenile stage after desalination for 9 days. Our results revealed that during the transition from megalopa to the first juvenile in Eriocheir sinensis, a significant change in gut microbial composition was observed (for instance, changes in relative abundance of dominant phyla), which was, however, not influenced by different sampling sites. The species diversity (such as the richness) of the gut microbiota showed a hump-shaped pattern along the succession. However, the compositional differences of the gut microbes showed constantly increasing patterns during the succession after freshwater adaption for all three sampling sites. Further co-occurrence analysis also showed that the complexity of the ecological networks in gut microbes was significantly enhanced during the development, such as increasing numbers of network links, connectivity and modularity, and was confirmed by decreasing average path length and proportions of negative links. Taken together, the differences in community structures and biological interactions of gut microorganisms were more pronounced in Eriocheir sinensis megalopa during desalination than in diversity and species compositions. This implies that the gut microbes of Eriocheir sinensis megalopa would become more robust and adaptive during the developmental process.

4.
Environ Res ; 250: 118517, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401680

RESUMEN

Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.


Asunto(s)
Altitud , Bacterias , Hongos , Hongos/clasificación , Hongos/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Biodiversidad , Clima Tropical , Ríos/microbiología , Microbiota
5.
Environ Sci Technol ; 58(9): 4334-4345, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38382548

RESUMEN

Microplastic mixtures are ubiquitously distributed in global ecosystems and include varying types. However, it remains unknown how microplastic diversity affects the biotic interactions of microbes. Here, we developed novel experiments of 600 microcosms with microplastic diversity ranging from 1 to 6 types and examined ecological networks for microbial communities in lake sediments after 2 months of incubation at 15 and 20 °C. We found that microplastic diversity generally enhanced the complexity of microbial networks at both temperatures, such as increasing network connectance and reducing average path length. This phenomenon was further confirmed by strengthened species interactions toward high microplastic diversity except for the negative interactions at 15 °C. Interestingly, increasing temperatures further exaggerated the effects of microplastic diversity on network structures, resulting in higher network connectivity and species interactions. Consistently, using species extinction simulations, we found that higher microplastic diversity and temperature led to more robust networks, and their effects were additionally and positively mediated by the presence of biodegradable microplastics. Our findings provide the first evidence that increasing microplastic diversity could unexpectedly promote the complexity and stability of microbial networks and that future warming could amplify this effect.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
6.
Int J Biol Macromol ; 258(Pt 2): 128996, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151079

RESUMEN

In biological evolution, gene duplication (GD) generates new genes to facilitate new functions. C-type lectins (CTLs) in crayfish have been extended by GD to expand their family members. In this study, four CTL genes generated by GD were identified from Procambarus clarkii (PcLec1-4). Among these four genes, PcLec1 can also generate new isoforms with different numbers of tandem repeats through DNA slip mispairing. PcLec1-4 was widely expressed in multiple tissues. The expression levels of PcLec1-4 were upregulated in the intestine of P. clarkii upon white spot syndrome virus (WSSV) challenge at multiple time points. Further analysis indicated that GATA transcription factor regulated PcLec1-4 expression. RNA interference and recombinant PcLec1-4 protein injection experiments suggested that PcLec1-4 promoted the expression of calreticulin (PcCRT) and negatively regulated the expression of antimicrobial peptides, thereby promoting WSSV replication. This study contributes to the understanding of the function of CTLs produced by GD during WSSV invasion in crustaceans.


Asunto(s)
Calreticulina , Virus del Síndrome de la Mancha Blanca 1 , Animales , Replicación Viral/genética , Astacoidea/genética , Lectinas Tipo C
7.
Fish Shellfish Immunol ; 138: 108816, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37236553

RESUMEN

The occurrence of hepatopancreatic necrosis syndrome (HPNS) has seriously affected the sustainable development of Chinese mitten crab (Eriocheir sinensis) farming industry. Limited studies have focused on the immune responses in crabs with HPNS. Serine proteases (SPs) and SP homologs (SPHs) play important roles in the innate immunity of crustaceans. This study investigated the effects of HPNS on the expression levels of genes related to prophenoloxidase (proPO) activation system, and the relationship between Runt transcription factor and the transcriptions of these genes. Eight SPs and five SPHs (SPH1-4, Mas) were identified from E. sinensis. SPs contain a catalytic triad of "HDS", while SPHs lack a catalytic residue. SPs and SPHs all contain a conservative Tryp_SPc domain. Evolutionary analysis showed that EsSPs, EsSPHs, EsPO, and EsRunt were clustered with SPs, SPHs, POs, and Runts of other arthropods, respectively. In crabs with HPNS, the expression levels of six SPs (1, 3, 4, 6, 7, and 8), five SPHs, and PO were significantly upregulated in the hepatopancreas. The knockdown of EsRunt could evidently decrease the expression levels of four SPs (3, 4, 5 and 8), five SPHs (SPH1-4, Mas), and PO. Therefore, the occurrence of HPNS activates the proPO system. Furthermore, the expression levels of partial genes related to proPO system were regulated by Runt. The activation of innate immune system may be a strategy for crabs with HPNS to improve immunity and fight diseases. Our study provides a new understanding of the relationship between HPNS and innate immunity.


Asunto(s)
Braquiuros , Síndrome Neurológico de Alta Presión , Animales , Serina Proteasas/química , Serina Endopeptidasas , Necrosis/veterinaria , Braquiuros/genética , Braquiuros/metabolismo , Inmunidad Innata/genética
8.
Antonie Van Leeuwenhoek ; 116(5): 487-497, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905561

RESUMEN

A Gram-stain-negative, aerobic, non-motile and rod-shaped strain, designated LJY008T, was isolated from the intestinal of Eriocheir sinensis in Pukou base of Jiangsu Institute of Freshwater Fisheries. Strain LJY008T could grow at 4-37 â„ƒ (optimum, 30 â„ƒ), pH 6.0-8.0 (optimum, pH 7.0), and with 1.0-6.0% NaCl (w/v; optimum, 1.0%). Strain LJY008T shared highest 16S rRNA gene sequence similarity with Jinshanibacter zhutongyuii CF-458T (99.3%), followed by J. allomyrinae BWR-B9T (99.2%), Insectihabitans xujianqingii CF-1111T (97.3%), and Limnobaculum parvum HYN0051T (96.7%). The major polar lipids include phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The only respiratory quinone was Q8, and the main fatty acids (> 10%) were C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c), summed feature 8 (C18:1ω7c), and C14:0. The genome-based phylogenies showed that strain LJY008T was closely associated with members of the genus Jinshanibacter, Insectihabitans, and Limnobaculum. The average nucleotide identities and average amino acid identities (AAI) among strain LJY008T and closely related neighbours were all below 95%, and the digital DNA-DNA hybridization values among them were all below 36%. The genomic DNA G + C content of strain LJY008T was 46.1%. Based on the phenotypic, phylogenetic, biochemical and chemotaxonomic analysis, strain LJY008T represents a novel species of the genus Limnobaculum, for which the name Limnobaculum eriocheiris sp. nov. is proposed. The type strain is LJY008T (= JCM 34675T = GDMCC 1.2436T = MCCC 1K06016T). In addition, the genera Jinshanibacter and Insectihabitans were reclassified as Limnobaculum, because there was no significant genome-scale divergence or diagnosable difference on phenotypic and chemotaxonomic traits, such as strains of Jinshanibacter and Insectihabitans sharing AAI values of 93.88-94.96%.


Asunto(s)
Fosfolípidos , Ubiquinona , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Ubiquinona/química , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/análisis , Análisis de Secuencia de ADN
9.
Front Immunol ; 13: 1021121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353630

RESUMEN

Gene duplication (GD) leads to the expansion of gene families that contributes organisms adapting to stress or environment and dealing with the infection of various pathogens. C-type lectins (CTLs) in crustaceans undergo gene expansion and participate in various immune responses. However, the functions of different CTL produced by GD are not fully characterized. In the present study, two CTL genes (designated as PcLec-EPS and PcLec-QPS, respectively) were identified from Procambarus clarkii. PcLec-EPS and PcLec-QPS originate from GD and the main difference between them is exon 3. PcLec-EPS and PcLec-QPS respectively contains EPS and QPS motif in their carbohydrate recognition domain. The mRNA levels of PcLec-EPS and PcLec-QPS in hemocytes, gills, intestine and lymph underwent time-dependent enhancement after D-Mannose and D-Galactose challenge. Recombinant PcLec-EPS and PcLec-QPS could bind to carbohydrates and microbes, and agglutinate bacteria. The results of experiments on recombinant protein injection and RNA interference indicate that PcLec-EPS and PcLec-QPS can respectively strong recognize and bind D-Mannose and D-Galactose, activate the Relish transcriptional factor, and further upregulate the expression of different antimicrobial peptides (AMPs). In addition, these two CTLs and Relish could positively regulate the expression of each other, suggesting that there is a positive feedback loop between two CTLs and Relish that regulates the expression of AMPs. It may contribute to the expansion of the immune response for host quickly and efficiently eliminating pathogenic microorganisms. This study provides new knowledge for clear understanding the significance and function of different CTL generated by GD in immune defenses in crustacean.


Asunto(s)
Astacoidea , Lectinas Tipo C , Animales , Lectinas Tipo C/metabolismo , Péptidos Antimicrobianos , Duplicación de Gen , Manosa , Galactosa , Retroalimentación
10.
J Phycol ; 58(6): 815-828, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308470

RESUMEN

Host-related microbiota are critically important for the adaptation/acclimation of hosts to changing environments, but how environmental factors and host characteristics shape the microbial communities remains largely unknown. We investigated the effects of temperature on habitat-forming macroalgae and their associated bacterial communities. Three Sargassum species (S. horneri, S. fusiforme, and S. thunbergii) and seawater samples were sampled in Gouqi Island, China, and these macroalgal samples were incubated at different temperatures (10, 20, and 27°C) for 7 d. Bacterial communities were identified from the 16S rRNA gene V3-V4 regions. The algae-associated bacterial communities of the field samples were significantly different from seawater, implying host specificity. During laboratory incubation, decreased physiological status (photosynthetic rate and oxidative stress response) was detected for all the species at 10°C, especially with regard to S. horneri and S. fusiforme. For each host, associated bacterial communities at 20 and 27°C clustered closely, and these were separated from samples at 10°C based on constrained PCoA analyses. Permutational multivariate analysis of variance revealed that algae-associated bacterial communities were more affected by host species (23.3%) than by temperature (2.48%) during laboratory incubation. The changes in bacterial community composition may be influenced by algae metabolites, which should be tested in a future study. These results further contribute to our understanding of algal microbiome changes in response to environmental changes.


Asunto(s)
Microbiota , Sargassum , Sargassum/fisiología , Temperatura , ARN Ribosómico 16S/genética , Especificidad del Huésped , Bacterias/genética
11.
BMC Genomics ; 23(1): 578, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953779

RESUMEN

Berberine hydrochloride is the main effective component of Coptis spp. used in Chinese herbal medicine and its underlying molecular mechanisms, responsible for inducing effects in crustacean species, are not fully understood. In this study, the molecular response of the crab Charybdis japonica to berberine hydrochloride exposure was studied using transcriptome sequencing. The survival rate, gene expression and activities of several immune enzymes were measured after berberine hydrochloride treatments, with or without injection of the pathogenic bacterium Aeromonas hydrophila. A total of 962 differentially expressed genes (464 up-regulated and 498 down-regulated) were observed during exposure to 100 mg/L of berberine hydrochloride and in the control group after 48 h. Enrichment analysis revealed that these genes are involved in metabolism, cellular processes, signal transduction and immune functions, indicating that exposure to berberine hydrochloride activated the immune complement system. This bioactive compound simultaneously activated fibrinogen beta (FGB), fibrinogen alpha (FGA), alpha-2-macroglobulin (A2M), kininogen (KNG), fibrinogen gamma chain (FGB), alpha-2-HS-glycoprotein (AHSG), caspase-8 (CASP8), cathepsin L (CTSL), adenylate cyclase 3 (Adcy3) and MMP1. Its action could significantly increase the survival rate of the crabs injected with A. hydrophila and promote the activity of LZM, Caspas8, FGA, ACP and AKP in the hepatopancreas. When A. hydrophila was added, the neutralization of 300 mg/L berberine hydrochloride maximized the activities of Caspas8, LZM, ACP and AKP. Our results provide a new understanding of the potential effects of berberine hydrochloride on the immune system mechanisms in crustaceans.


Asunto(s)
Berberina , Braquiuros , Animales , Berberina/farmacología , Braquiuros/genética , Fibrinógeno/farmacología , Hepatopáncreas , Inmunidad/genética
12.
Sci Total Environ ; 833: 155722, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35525353

RESUMEN

The widespread generation and accumulation of plastic waste has become a globally recognized problem. However, there are limited reports on the adverse effects of nanomaterials on freshwater crustaceans. This study tested the acute effects of different concentrations (0, 5, 10, and 20 mg/L) after 48 h exposure of 75 nm polystyrene nanoplastic on intestinal microbes, and oxidative stress parameters of freshwater crayfish, Procambarus clarkii. High-throughput sequencing analysis revealed the richness, diversity, and composition of intestinal microbiota in P. clarkii exposed to polystyrene nanoplastic. At the genus level, abundances of Lactobacillus, Faecalibaculum, Niveibacterium, and Candidatus Bacilloplasma were significantly different. The reduced abundance of Lactobacillus could affect the balance of intestinal microbes through quantitative disadvantage, which may lead to reduced immunity of P. clarkii. Streptococcus salivarius, Clostridium butyricum and Lachnospiraceae bacterium10-1 in intestinal tract reached maximum abundance at a polystyrene concentration of 20 mg/L. The increase in the number of some pathogenic bacteria may upset the balance of intestinal microorganisms through the number of dominance, and the decrease in the relative abundance of lactic acid bacteria. Probiotics, such as Lactobacillus salivarius, Lactobacillus murinus, Lactobacillus gasseri, Lactobacillus reuteri, Lactobacillus iners AB-1, and Lactobacillus crispatus in the intestinal tract reached the lowest value at a concentration of 10 mg/L. The reduced abundance of Lactobacillus can affect the balance of intestinal microbes through quantitative disadvantage, which may lead to reduced immunity in P. clarkii. At nanoplastic 10 mg/L, the relative abundance of intestinal pathogens increased, while the relative abundance of lactic acid bacteria and other probiotics decreased. With increases in nanoplastic concentrations, the values of glutathione (GSH), superoxide dismutase (SOD), acid phosphatase (ACP), lysozyme (LZM), alkaline phosphatase (AKP), peroxidase (POD), glutathione peroxidase (GPX), and protein carbonylation were significantly changed. Our data suggested that Lactobacillus may play an adjunctive role in the treatment of oxidative stress in P. clarkii exposed to 75 nm polystyrene. This study represents an important step towards a better understanding of the toxic effects of nanoplastics on aquatic crustaceans.


Asunto(s)
Astacoidea , Microplásticos , Animales , Agua Dulce , Estrés Oxidativo , Poliestirenos/toxicidad
13.
Front Microbiol ; 13: 858508, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432227

RESUMEN

Biological migration is usually associated with disturbances and environmental changes that are key drivers in determining the diversity, community compositions, and function of gut microbiome. However, little is known about how gut microbiome is affected by disturbance such as salinity changes during migration from seawater to freshwater. Here, we tracked the gut microbiome succession of Chinese mitten crabs (Eriocheir sinensis) during their migrations from seawater to freshwater and afterward using 16S rDNA sequencing for 127 days, and explored the temporal patterns in microbial diversity and the underlying environmental factors. The species richness of gut microbiome showed a hump-shaped trend over time during seawater-freshwater migration. The community dissimilarities of gut microbiome increased significantly with day change. The turnover rate of gut microbiome community was higher during seawater-freshwater transition (1-5 days) than that in later freshwater conditions. Salinity was the major factor leading to the alpha diversity and community dissimilarity of gut microbiome during seawater-freshwater transition, while the host selection showed dominant effects during freshwater stage. The transitivity, connectivity, and average clustering coefficient of gut microbial co-occurrence networks showed decreased trends, while modularity increased during seawater-freshwater migration. For metabolic pathways, "Amino Acid Metabolism" and "Lipid Metabolism" were higher during seawater-freshwater transition than in freshwater. This study advances our mechanistic understanding of the assembly and succession of gut microbiota, which provides new insights into the gut ecology of other aquatic animals.

14.
Environ Sci Pollut Res Int ; 29(31): 47148-47158, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35175534

RESUMEN

Spinetoram is one of the most worldwidely used pesticides for its high insecticidal efficacy and low human toxicity. Following the large usage of spinetoram, the ecotoxicity and environmental risks to aquatic ecosystems have call for urgent study. In the present study, we investigated the combined effects of spinetoram and the harmful alga Microcystis aeruginosa in freshwater, on survival and reproduction of Daphnia pulex. Acute toxicity test of spinetoram resulted in negative effects on survival, with a 48-h LC50 value of 37.71 µg L-1. Under the long-time exposure to environmentally relevant concentrations (0.18 and 0.35 µg L-1) of spinetoram and a low composition of Microcystis (30%) in the diet, D. pulex showed both shorter longevity and lower fecundity; the time to first brood also increased. At population level, carrying capacity was highly decreased by spinetoram and Microcystis, whereas a significant decrease of intrinsic growth rate was observed at 0.35 µg L-1 spinetoram with 30% Microcystis as food. The present study highlighted that pesticide spinetoram had highly toxic effects on D. pulex and could reduce the tolerance of D. pulex to M. aeruginosa, causing great effects on D. pulex population in natural waterbodies.


Asunto(s)
Cladóceros , Cianobacterias , Microcystis , Plaguicidas , Animales , Daphnia , Ecosistema , Macrólidos , Plaguicidas/toxicidad
15.
Genomics ; 113(5): 3274-3284, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303807

RESUMEN

Red swamp crayfish Procambarus clarkii is an ecologically and economically important crustacean species. Here, based on a de novo assembly strategy combining PacBio with Hi-C sequencing, we presented a high quality chromosome-level P. clarkii genome. The assembled genome is 2.75 Gb in size with a contig N50 of 216.75 kb. Transposable elements (TEs) make up the largest fraction of the genome (~79.61%), and LINEs comprise the majority of the TEs. Frequent molting and rapid growth of the red swamp crayfish may be explained by the expansion of multiple gene families regarding growth or development. Phylogenetic analysis revealed that P. clarkii diverged from Portunus trituberculatus at 278-407 million years ago (Mya). PSMC analysis identified multiple bottleneck events of the P. clarkii population between 2 kaBP to 14 kaBP. The obtained P. clarkii genome should not only facilitate us understanding the development and evolution of the crayfish species, but also contribute to the genetic improvement in future breeding selections.


Asunto(s)
Astacoidea , Cromosomas , Animales , Astacoidea/genética , Cromosomas/genética , Genoma , Filogenia , Alimentos Marinos
16.
J Fish Dis ; 44(6): 675-687, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33423323

RESUMEN

As one of the piscine rhabdoviruses, Siniperca chuatsi rhabdovirus (SCRV) has caused considerable losses to mandarin fish aquaculture industry. RNA-seq, as efficient transcriptome research method, has been widely used to study the immune response of fish to pathogens. This study reported the effect of SCRV infection at 0, 24 and 60 hr on S. chuatsi at the transcriptome level. A total of 61,527 unigenes with high quality were obtained, and 3,095, 1,854 and 227 differentially expressed genes (DEGs) were labelled between the Sc24 and Sc0 groups, the Sc60 and Sc0 groups and the Sc60 and Sc24 groups, respectively. Genes involved in innate and adaptive immunity were highlighted. In Gene Ontology analysis, the DEGs that participated in immune response, innate immune response and the regulation of apoptotic process were identified as enriched classes. Kyoto Encyclopedia of Genes and Genomes pathway results indicated that most DEGs caused by SCRV infection were identified in the immune system (retinoic acid-inducible gene-I-like receptor/Toll-like receptor/nucleotide-binding oligomerization domain-like receptor/C-type lectin receptor signalling pathway), cellular processes, cell growth and death (p53 signalling pathway, cellular senescence, apoptosis and phagosome), and metabolism. Quantitative real-time PCR was used to further verify the expression levels of 15 immune-related DEGs. The transcriptome database obtained in this study provided further in-depth insight into the immune response of S. chuatsi against SCRV.


Asunto(s)
Inmunidad Adaptativa/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Perciformes/genética , Perciformes/inmunología , Transcriptoma/inmunología , Animales , Apoptosis , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Ontología de Genes , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología
17.
J Cell Physiol ; 235(4): 3485-3496, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31549395

RESUMEN

lncrps25 is an intergenic long noncoding RNA (lncRNA), which is location close to rps25 (ribosomal protein S25) gene, is reported share high conserved sequence with NREP (neuronal regeneration-related protein) 3'-untranslated region. The function and mechanism of most of the lncRNA in embryo development remain largely unknown. In zebrafish, lncrps25 is widely expressed in the early embryonic stage and spinal cord during development. Morpholino (MO) knockdown of zebrafish lncrps25 exhibit locomotor behavior defects, caused by abnormal development of motor neurons. In addition, the defect of swimming ability and motor neurons could be recovery by microinject with lncrps25 RNA in lncrps25 morphants. By performing RNA sequencing and quantitative real-time polymerase chain reaction, we found that olig2 (oligodendrocyte transcription factor 2) messenger RNA (mRNA) was downregulated in lncrps25 morphants. Moreover, overexpression of olig2 mRNA in lncrps25 morphants partially rescued motor neurons development. Taken together, these results indicate that lncrps25 plays an essential role in the development of motor neurons in zebrafish.


Asunto(s)
Neuronas Motoras/metabolismo , Neurogénesis/genética , Factor de Transcripción 2 de los Oligodendrocitos/genética , ARN Largo no Codificante/genética , Proteínas Ribosómicas/genética , Proteínas de Pez Cebra/genética , Animales , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Morfolinos/genética , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
18.
Molecules ; 24(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775255

RESUMEN

Seaweeds are some of the largest producers of biomass in the marine environment and are rich in bioactive compounds that are often used for human and animal health. Porphyran and carrageenan are natural compounds derived from red seaweeds. The former is a characteristic polysaccharide of Porphyra, while the latter is well known from Chondrus, Gigartina, and various Eucheuma species, all in Rhodophyceae. The two polysaccharides have been found to have anti-cancer activity by improving immunity and targeting key apoptotic molecules and therefore deemed as potential chemotherapeutic or chemopreventive agents. This review attempts to review the current study of anti-cancer activity and the possible mechanisms of porphyran and carrageenan derived from red seaweeds to various cancers, and their cooperative actions with other anti-cancer chemotherapeutic agents is also discussed.


Asunto(s)
Carragenina/uso terapéutico , Neoplasias/tratamiento farmacológico , Algas Marinas/química , Sefarosa/análogos & derivados , Carragenina/química , Humanos , Inmunidad/efectos de los fármacos , Neoplasias/inmunología , Polisacáridos/química , Sefarosa/química , Sefarosa/uso terapéutico
19.
Fish Shellfish Immunol ; 91: 58-67, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31096059

RESUMEN

As a type of pattern-recognition proteins (PRRs), C-type lectins (CTLs) perform important functions in non-self recognition and clearance of pathogens in innate immunity. In this study, a unique 2-transmembrane CTL (designated as Mn-2TM-cLec) with a single carbohydrate recognition domain (CRD) was isolated from Macrobrachium nipponense. The full-length cDNA of Mn-2TM-cLec consisted of 3265 bp with an 837 bp open reading frame encoding a protein with 278 amino acids. Mn-2TM-cLec was ubiquitously distributed in various tissues of normal prawn, particularly in the hemocytes, hepatopancreas, and gills. The expression of Mn-2TM-cLec was significantly up-regulated in the gills and hepatopancreas after the prawns were challenged with Staphylococcus aureus and Vibrio parahaemolyticus. RNA interference knock-down of Mn-2TM-cLec gene decreased the transcription levels of three antimicrobial peptides (anti-lipopolysaccharide factor (ALF) 1, ALF2, and Crustin (Crus) 1) after V. parahaemolyticus infection. The recombinant CRD of Mn-2TM-cLec could bind lipopolysaccharide, peptidoglycans, and diverse bacterial strains and agglutinate S. aureus and V. parahaemolyticus in a Ca2+-dependent manner. In addition, the rCRD enhanced the clearance of V. parahaemolyticus injected in prawns. In summary, Mn-2TM-cLec might act as a PRR to participate in the prawn immune defense against pathogens through its antimicrobial activity.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Palaemonidae/genética , Palaemonidae/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Lectinas Tipo C/química , Filogenia , Alineación de Secuencia , Staphylococcus aureus/fisiología , Vibrio parahaemolyticus/fisiología
20.
Fish Shellfish Immunol ; 87: 460-469, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30685464

RESUMEN

B52 is a member of the classical serine/arginine (SR)-rich proteins, which are phylogenetically conserved and play significant roles in mRNA maturation, including alternative splicing. In the present study, the docking site, selector sequences and locus control region of the Chinese mitten crab (Eriocheir sinensis) Down syndrome cell adhesion molecule (EsDscam) were identified. Alternative splicing of Dscam is essential to generate different isoforms. We also isolated and characterised the B52 gene from E. sinensis (EsB52). The 876 bp open reading frame of EsB52 encodes a 291 amino acid residue polypeptide, and EsB52 has two RNA recognition motifs (RRMs) at the N-terminus and an arginine/serine-rich domain at the C-terminus. Each RRM contains two degenerate short submotifs, RNP-1 and RNP2. Analysis of tissue distribution revealed that EsB52 mRNA expression was widespread in all tested tissues, and especially high in brain and hemocytes. In hemocytes, EsB52 was upregulated significantly after stimulation with pathogen-associated molecular patterns and bacteria. Furthermore, EsB52 RNAi decreased the number of Ig7 inclusion in mRNA rather than Ig2 or Ig3. Taken together, these findings suggest that EsB52 acts as an alternative splicing activator of EsDscam.


Asunto(s)
Braquiuros/genética , Braquiuros/inmunología , Moléculas de Adhesión Celular/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/inmunología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Moléculas de Adhesión Celular/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Filogenia , Alineación de Secuencia , Factores de Empalme Serina-Arginina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA