Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 357: 120809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583382

RESUMEN

Aerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study. In addition to continuous aeration with a constant intensity of 0.3 L kg·dry mass (DM)-1·min-1, two multi-stage decreased aeration regimes were designed as "0.3-0.2-0.1" and "0.3-0.1-0.1" L·kg·DM-1·min-1 from the thermophilic to cooling and then mature stages, respectively. Results showed that the decreased aeration regimes could alleviate nitrous oxide (N2O) and ammonia (NH3) emission and slightly enhance humification during composting. The alleviated N2O and NH3 emission were mainly contributed by abiotically reducing gaseous release potential as well as biotically inactivating denitrifers (Pusillimonas and Pseudidiomarina) and proliferating Atopobium to reduce nitrate availability under lower aeration supply. The "0.3-0.2-0.1 L kg·DM-1·min-1" regime exhibited a more excellent performance to alleviate N2O and NH3 emission by 27.5% and 16.3%, respectively. Moreover, the decreased aeration regimes also favored the enrichment of functional bacteria (Caldicoprobacter and Syntrophomonas) to accelerate lignocellulosic biodegradation and thus humic acid synthesis by 6.5%-11.2%. Given its better performance to improve gaseous emissions and humification, the aeration regime of "0.3-0.2-0.1 L kg·DM-1·min-1" are recommended in food waste digestate composting in practice.


Asunto(s)
Compostaje , Eliminación de Residuos , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado , Alimentos , Suelo , Gases
2.
Environ Sci Technol ; 58(17): 7367-7379, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644786

RESUMEN

Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.


Asunto(s)
Compostaje , Óxido Nitroso , Óxido Nitroso/metabolismo , Bacterias/metabolismo
3.
Bioresour Technol ; 387: 129633, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544546

RESUMEN

This study aims to reveal the underlying mechanisms of mature compost addition for improving organic waste composting. Composting experiments and metagenomic analysis were conducted to elucidate the role of mature compost addition to regulate microbial metabolisms and physiological behaviors for composting amelioration. Mature compost with or without inactivation pretreatment was added to the composting of kitchen and garden wastes at 0%, 5%, 10%, 15%, and 20% (by wet weight) for comparison. Results show that mature compost promoted pyruvate metabolism, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation to produce heat and energy to accelerate temperature increase for composting initiation and biological contaminant removal (>78%) for pasteurization. Energy requirement drives bacterial chemotactic motility towards nutrient-rich regions to sustain organic biodegradation. Nevertheless, when NADH formation exceeded NAD+ regeneration in oxidative phosphorylation, TCA cycle was restrained to limit continuous temperature increase and recover high intracellular NAD+/NADH ratio to secure stable oxidation reactions.


Asunto(s)
Compostaje , NAD , Ciclo del Ácido Cítrico , Biodegradación Ambiental , Oxidación-Reducción , Suelo
4.
Bioresour Technol ; 387: 129682, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586431

RESUMEN

This study investigated the effects of free air space (FAS) (45%, 55%, 65%) on bacterial dynamics for gaseous emissions during kitchen waste composting. Results show that FAS increase from 45% to 65% elevated oxygen diffusivity to inhibit bacteria for fermentation (e.g. Caldicoprobacter and Ruminofilibacter) to reduce methane emission by 51%. Moreover, the increased FAS accelerated heat loss to reduce temperature and the abundance of thermophiles (e.g. Thermobifida and Thermobacillus) for aerobic chemoheterotrophy to mitigate ammonia emission by 32%. Nevertheless, the reduced temperature induced the growth of Desulfitibacter and Desulfobulbus for sulfate/sulfite respiration to boost hydrogen sulphide emission. By contrast, FAS at 55% achieved the highest germination index and favored the proliferation of nitrifiers and denitrifiers (e.g. Roseiflexus and Steroidobacter) to improve nitrate availability, thus slightly enhancing nitrous oxide emission. Thus, FAS at 55% exhibits the optimal performance for gaseous emission reduction and maturity enhancement in kitchen waste composting.


Asunto(s)
Contaminantes Atmosféricos , Compostaje , Gases , Contaminantes Atmosféricos/análisis , Suelo , Bacterias
5.
Sci Total Environ ; 889: 164239, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196963

RESUMEN

This study assessed the impact of aeration intensity on food waste digestate composting to simultaneously govern organic humification and gaseous emissions. Results show that an augment in the aeration intensity from 0.1 to 0.4 L·kg-1 DM·min-1 provided more oxygen to facilitate organic consumption and thus temperature increase, but slightly restrained organic humification (e.g. less humus content and higher E4/E6 ratio) and substrate maturity (i.e. lower germination index). Furthermore, increasing aeration intensity inhibited the proliferation of the genera Tepidimicrobium and Caldicoprobacter to alleviate methane emission and enriched the genus Atopobium to boost hydrogen sulphide production. More importantly, increasing aeration intensity limited the growth of the genus Acinetobacter for nitrite/nitrogen respiration, but strengthened aerodynamics to blow out nitrous oxide and ammonia produced inside piles. Principal component analysis comprehensively indicated that a low aeration intensity of 0.1 L·kg-1DM·min-1 facilitated precursors synthesis toward humus and simultaneously mitigated gaseous emissions to improve food waste digestate composting.


Asunto(s)
Compostaje , Eliminación de Residuos , Gases , Alimentos , Suelo
6.
Bioresour Technol ; 371: 128644, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36681346

RESUMEN

This study investigated the performance and mechanisms of intermittent aeration to regulate gaseous emission and humification during food waste digestate composting. In addition to continuous aeration, three intermittent aeration regimes were conducted with the on-off interval ratio at 3:1, 2:1, and 1:1 within each 30 min, respectively. Results showed that intermittent aeration regimes reduced gaseous emission and enhanced humification during composting. In particular, intermittent aeration with the on/off ratio of 1:1 was more effective to reduce organic mineralization than other regimes, which alleviated the emission of nitrous oxide and ammonia by 63.1% and 75.7% in comparison with continuous aeration, respectively. In addition, this aeration regime also enhanced the content of humic acid by 24.1%. Further analysis demonstrated that prolonging aeration-off intervals could enrich facultative bacteria (e.g. Atopobium and Clostridium) from digestate and inhibit the proliferation of several aerobic bacteria (e.g. Caldicoprobacter and Marinimicrobium) to retard organic mineralization for humification.


Asunto(s)
Compostaje , Eliminación de Residuos , Gases , Eliminación de Residuos/métodos , Alimentos , Suelo
7.
Waste Manag ; 153: 129-137, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36088860

RESUMEN

This study aimed to identify the sources of volatile sulphur compounds (VSCs) and evaluate their mitigation by ferric oxide (Fe2O3) during swine manure composting. Four chemicals, including l-cysteine, l-methionine, sodium sulphite, and sodium sulphate, were further added to simulate organic and inorganic sulphur-containing substances in swine manure to track VSC sources during composting. Results show that sulphur simulants induced the emission of six common VSCs, including methyl sulphide (Me2S), dimethyl sulphide (Me2SS), carbonyl sulphide (COS), carbon disulphide (CS2), methyl mercaptan (MeSH), and ethyl mercaptan (EtSH), during swine manure composting. Of them, COS, CS2, MeSH and Me2SS were predominantly contributed by the biodegradation of methionine and cysteine, while Me2S and EtSH were dominated by the reduction of sulphite and sulphate. Further Fe2O3 addition at 1.5 % of total wet weight of composting materials immobilized elemental sulphur and inhibited sulphate reduction to reduce the emission of VSCs by 46.7-80.9 %. Furthermore, odour assessment indicated that adding Fe2O3 into composting piles significantly reduced the odour intensity level to below 4, the odour value of VSCs by 47.1-81.3 %, and thus the non-carcinogenic risk by 68.4 %.


Asunto(s)
Disulfuro de Carbono , Compostaje , Animales , Cisteína , Estiércol , Metionina , Odorantes , Sulfatos , Compuestos de Sulfhidrilo , Sulfuros , Sulfitos , Azufre , Compuestos de Azufre , Porcinos
8.
Sci Total Environ ; 848: 157653, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926596

RESUMEN

This study investigated the impacts of lime addition and further microbial inoculum on gaseous emission and humification during kitchen waste composting. High-throughput sequencing was integrated with Linear Discriminant Analysis Effect Size (LEfSe) and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to decipher bacterial dynamics in response to different additives. Results showed that lime addition enriched bacteria, such as Taibaiella and Sphingobacterium as biomarkers, to strengthen organic biodegradation toward humification. Furthermore, lime addition facilitated the proliferation of thermophilic bacteria (e.g. Bacillus and Symbiobacterium) for aerobic chemoheterotrophy, leading to enhanced organic decomposition to trigger notable gaseous emission. Such emission profile was further exacerbated by microbial inoculum to lime-regulated condition given the rapid enrichment of bacteria (e.g. Caldicoprobacter and Pusillimonas as biomarkers) for fermentation and denitrification. In addition, microbial inoculum slightly hindered humus formation by narrowing the relative abundance of bacteria for humification. Results from this study show that microbial inoculum to feedstock should be carefully regulated to accelerate composting and avoid excessive gaseous emission.


Asunto(s)
Compostaje , Bacterias/metabolismo , Compuestos de Calcio , Compostaje/métodos , Gases/metabolismo , Óxidos , Suelo
9.
Sci Total Environ ; 814: 152509, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34968605

RESUMEN

This study evaluated the humification and maturation of kitchen waste during indoor composting by individual households. In total, 50 households were randomly selected to participate in this study using kitchen waste of their own for indoor composting using a standard 20 L sealed composter. Garden waste was also collected from their local communities and used as the bulking agent. Both effective microorganisms and lime were inoculated at 1% (wet weight) of raw composting materials to facilitate the composting initiation. Results from this study demonstrate for the first time that ordinary residents could correctly follow the instruction to operate indoor composting at household level to manage urban kitchen waste at source. Overall, 30 households provided valid and complete data to show an increase (to ~50 °C) and then decrease in temperature in response to the decline of biodegradable organic substances during indoor composting. The compost physiochemical characteristics varied significantly toward maturation with an increase in seed germination index to above 50% for most households. Furthermore, organic humification occurred continuously during indoor composting as indicated by the enhanced content of humic substances, degree of polymerization, and spectroscopic characteristics.


Asunto(s)
Compostaje , Jardines , Sustancias Húmicas/análisis , Suelo , Temperatura
10.
Sci Total Environ ; 801: 149640, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416604

RESUMEN

Using high-throughput sequencing and Functional Annotation of Prokaryotic Taxa (FAPROTAX), this study aimed to elucidate the effect of bacterial dynamics on gaseous emission and humification of kitchen and garden wastes during composting augmented with microbial inoculants. Microbial inoculant addition at up to 0.9% resulted in a diverse bacterial community with more functional bacteria to amend gaseous emission and enhance humification. Microbial inoculation facilitated the enrichment of aerobic bacteria (e.g. the genus Bacillus and Thermobifida) to enhance cellulolysis and ligninolysis to advance organic humification. By contrast, several bacteria, such as the genus Weissella and Pusillimonas were inhibited by microbial inoculation to weaken fermentation and nitrate respiration. As such, bio-augmented composting with 0.9% microbial inoculant reduced the emission of methane by 11-20% and nitrogen oxide by 17-54%. On the other hand, ammonia and hydrogen sulphide emissions increased by 26-62% and 5-23%, respectively, in bio-augmented composting due to the considerable proliferation of the genus Bacillus and Desulfitibacter to enhance ammonification and sulphur-related respiration. Results from this study highlight the need to further develop efficient and multifunctional microbial inoculants that promote humification and deodorization for bio-augmented composting of kitchen waste as well as other carbon and nutrient rich organic wastes.


Asunto(s)
Compostaje , Amoníaco/análisis , Bacterias , Gases/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA