Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 15: 1364774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629075

RESUMEN

Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.


Asunto(s)
Asma , Hipersensibilidad , Células T Asesinas Naturales , Humanos , Hipersensibilidad/terapia , Citocinas , Inmunoterapia
2.
Front Immunol ; 14: 1186368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575242

RESUMEN

Background: Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that causes gastrointestinal infections, ranging from acute diarrhea and dysentery to life-threatening diseases such as Hemolytic Uremic Syndrome. Currently, a vaccine to prevent STEC infection is an unmet medical need. Results: We developed a chimeric protein-based vaccine targeting seven virulence factors of STEC, including the Stx2B subunit, Tir, Intimin, EspA, Cah, OmpT, and AggA proteins. Immunization of mice with this vaccine candidate elicited significant humoral and cellular immune responses against STEC. High levels of specific IgG antibodies were found in the serum and feces of immunized mice. However, specific IgA antibodies were not detected in either serum or feces. Furthermore, a significantly higher percentage of antigen-specific CD4+ T cells producing IFN-γ, IL-4, and IL-17 was observed in the spleens of immunized mice. Notably, the immunized mice showed decreased shedding of STEC O157:H7 and STEC O91:H21 strains and were protected against weight loss during experimental infection. Additionally, infection with the STEC O91:H21 strain resulted in kidney damage in control unimmunized mice; however, the extent of damage was slightly lower in immunized mice. Our findings suggest that IgG antibodies induced by this vaccine candidate may have a role in inhibiting bacterial adhesion and complement-mediated killing. Conclusion: This study provides evidence that IgG responses are involved in the host defense against STEC. However, our results do not rule out that other classes of antibodies also participate in the protection against this pathogen. Additional work is needed to improve the protection conferred by our vaccine candidate and to elucidate the relevant immune responses that lead to complete protection against this pathogen.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Vacunas , Animales , Ratones , Inmunoglobulina G , Formación de Anticuerpos , Proteínas Recombinantes de Fusión
3.
Front Med (Lausanne) ; 10: 1155751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215733

RESUMEN

Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.

4.
mBio ; 13(6): e0131122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36383021

RESUMEN

Multiple vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been evaluated in clinical trials. However, trials addressing the immune response in the pediatric population are scarce. The inactivated vaccine CoronaVac has been shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China. Here, we report interim safety and immunogenicity results of a phase 3 clinical trial for CoronaVac in healthy children and adolescents in Chile. Participants 3 to 17 years old received two doses of CoronaVac in a 4-week interval until 31 December 2021. Local and systemic adverse reactions were registered for volunteers who received one or two doses of CoronaVac. Whole-blood samples were collected from a subgroup of 148 participants for humoral and cellular immunity analyses. The main adverse reaction reported after the first and second doses was pain at the injection site. Four weeks after the second dose, an increase in neutralizing antibody titer was observed in subjects relative to their baseline visit. Similar results were found for activation of specific CD4+ T cells. Neutralizing antibodies were identified against the Delta and Omicron variants. However, these titers were lower than those for the D614G strain. Importantly, comparable CD4+ T cell responses were detected against these variants of concern. Therefore, CoronaVac is safe and immunogenic in subjects 3 to 17 years old, inducing neutralizing antibody secretion and activating CD4+ T cells against SARS-CoV-2 and its variants. (This study has been registered at ClinicalTrials.gov under no. NCT04992260.) IMPORTANCE This work evaluated the immune response induced by two doses of CoronaVac separated by 4 weeks in healthy children and adolescents in Chile. To date, few studies have described the effects of CoronaVac in the pediatric population. Therefore, it is essential to generate knowledge regarding the protection of vaccines in this population. Along these lines, we reported the anti-S humoral response and cellular immune response to several SARS-CoV-2 proteins that have been published and recently studied. Here, we show that a vaccination schedule consisting of two doses separated by 4 weeks induces the secretion of neutralizing antibodies against SARS-CoV-2. Furthermore, CoronaVac induces the activation of CD4+ T cells upon stimulation with peptides from the proteome of SARS-CoV-2. These results indicate that, even though the neutralizing antibody response induced by vaccination decreases against the Delta and Omicron variants, the cellular response against these variants is comparable to the response against the ancestral strain D614G, even being significantly higher against Omicron.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Humanos , Niño , Preescolar , Anticuerpos Neutralizantes , Vacunas de Productos Inactivados , Anticuerpos Antivirales
5.
Proc Natl Acad Sci U S A ; 119(15): e2104453119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377790

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population with high immunosuppressive activity that proliferates in infections, inflammation, and tumor microenvironments. In tumors, MDSC exert immunosuppression mainly by producing reactive oxygen species (ROS), a process triggered by the NADPH oxidase 2 (NOX2) activity. NOX2 is functionally coupled with the Hv1 proton channel in certain immune cells to support sustained free-radical production. However, a functional expression of the Hv1 channel in MDSC has not yet been reported. Here, we demonstrate that mouse MDSC express functional Hv1 proton channel by immunofluorescence microscopy, flow cytometry, and Western blot, besides performing a biophysical characterization of its macroscopic currents via patch-clamp technique. Our results show that the immunosuppression by MDSC is conditional to their ability to decrease the proton concentration elevated by the NOX2 activity, rendering Hv1 a potential drug target for cancer treatment.


Asunto(s)
Canales Iónicos , Células Supresoras de Origen Mieloide , Protones , Linfocitos T , Animales , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Células Supresoras de Origen Mieloide/inmunología , NADPH Oxidasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA