RESUMEN
Chemical synapses exhibit a diverse array of internal mechanisms that affect the dynamics of transmission efficacy. Many of these processes, such as release of neurotransmitter and vesicle recycling, depend strongly on activity-dependent influx and accumulation of Ca2+. To model how each of these processes may affect the processing of information in neural circuits, and how their dysfunction may lead to disease states, requires a computationally efficient modelling framework, capable of generating accurate phenomenology without incurring a heavy computational cost per synapse. Constructing a phenomenologically realistic model requires the precise characterization of the timing and probability of neurotransmitter release. Difficulties arise in that functional forms of instantaneous release rate can be difficult to extract from noisy data without running many thousands of trials, and in biophysical synapses, facilitation of per-vesicle release probability is confounded by depletion. To overcome this, we obtained traces of free Ca2+ concentration in response to various action potential stimulus trains from a molecular MCell model of a hippocampal Schaffer collateral axon. Ca2+ sensors were placed at varying distance from a voltage-dependent calcium channel (VDCC) cluster, and Ca2+ was buffered by calbindin. Then, using the calcium traces to drive deterministic state vector models of synaptotagmin 1 and 7 (Syt-1/7), which respectively mediate synchronous and asynchronous release in excitatory hippocampal synapses, we obtained high-resolution profiles of instantaneous release rate, to which we applied functional fits. Synchronous vesicle release occurred predominantly within half a micron of the source of spike-evoked Ca2+ influx, while asynchronous release occurred more consistently at all distances. Both fast and slow mechanisms exhibited multi-exponential release rate curves, whose magnitudes decayed exponentially with distance from the Ca2+ source. Profile parameters facilitate on different time scales according to a single, general facilitation function. These functional descriptions lay the groundwork for efficient mesoscale modelling of vesicular release dynamics.
Asunto(s)
Calcio , Sinapsis , Potenciales de Acción/fisiología , Neurotransmisores , Sinapsis/fisiología , Transmisión Sináptica/fisiologíaRESUMEN
Reliable timing of cortical spikes in response to visual events is crucial in representing visual inputs to the brain. Spikes in the primary visual cortex (V1) need to occur at the same time within a repeated visual stimulus. Two classical mechanisms are employed by the cortex to enhance reliable timing. First, cortical neurons respond reliably to a restricted set of stimuli through their preference for certain patterns of membrane potential due to their intrinsic properties. Second, intracortical networking of excitatory and inhibitory neurons induces lateral inhibition that, through the timing and strength of IPSCs and EPSCs, produces sparse and reliably timed cortical neuron spike trains to be transmitted downstream. Here, we describe a third mechanism that, through preferential thalamocortical synaptic connectivity, enhances the trial-to-trial timing precision of cortical spikes in the presence of spike train variability within each trial that is introduced between LGN neurons in the retino-thalamic pathway. Applying experimentally recorded LGN spike trains from the anesthetized cat to a detailed model of a spiny stellate V1 neuron, we found that output spike timing precision improved with increasing numbers of convergent LGN inputs. The improvement was consistent with the predicted proportionality of [Formula: see text] for n LGN source neurons. We also found connectivity configurations that maximize reliability and that generate V1 cell output spike trains quantitatively similar to the experimental recordings. Our findings suggest a general principle, namely intra-trial variability among converging inputs, that increases stimulus response precision and is widely applicable to synaptically connected spiking neurons.SIGNIFICANCE STATEMENT The early visual pathway of the cat is favorable for studying the effects of trial-to-trial variability of synaptic inputs and intra-trial variability of thalamocortical connectivity on information transmission into the visual cortex. We have used a detailed model to show that there are preferred combinations of the number of thalamic afferents and the number of synapses per afferent that maximize the output reliability and spike-timing precision of cortical neurons. This provides additional insights into how synchrony in thalamic spike trains can reduce trial-to-trial variability to produce highly reliable reporting of sensory events to the cortex. The same principles may apply to other converging pathways where temporally jittered spike trains can reliably drive the downstream neuron and improve temporal precision.