Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 42(20): e113510, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530438

RESUMEN

Unscheduled increases in ploidy underlie defects in tissue function, premature aging, and malignancy. A concomitant event to polyploidization is the amplification of centrosomes, the main microtubule organization centers in animal cells. Supernumerary centrosomes are frequent in tumors, correlating with higher aggressiveness and poor prognosis. However, extra centrosomes initially also exert an onco-protective effect by activating p53-induced cell cycle arrest. If additional signaling events initiated by centrosomes help prevent pathology is unknown. Here, we report that extra centrosomes, arising during unscheduled polyploidization or aberrant centriole biogenesis, induce activation of NF-κB signaling and sterile inflammation. This signaling requires the NEMO-PIDDosome, a multi-protein complex composed of PIDD1, RIPK1, and NEMO/IKKγ. Remarkably, the presence of supernumerary centrosomes suffices to induce a paracrine chemokine and cytokine profile, able to polarize macrophages into a pro-inflammatory phenotype. Furthermore, extra centrosomes increase the immunogenicity of cancer cells and render them more susceptible to NK-cell attack. Hence, the PIDDosome acts as a dual effector, able to engage not only the p53 network for cell cycle control but also NF-κB signaling to instruct innate immunity.


Asunto(s)
FN-kappa B , Neoplasias , Animales , Centrosoma/metabolismo , Inflamación/patología , Monitorización Inmunológica , Neoplasias/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Humanos
2.
Biochem Soc Trans ; 50(2): 813-824, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35343572

RESUMEN

The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Caspasa 2 , Apoptosis/fisiología , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Caspasas/metabolismo , Puntos de Control del Ciclo Celular , Muerte Celular , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Inflamación
3.
Life Sci Alliance ; 4(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33536237

RESUMEN

γ-secretase inhibitors (GSI) were developed to reduce the generation of Aß peptide to find new Alzheimer's disease treatments. Clinical trials on Alzheimer's disease patients, however, showed several side effects that worsened the cognitive symptoms of the treated patients. The observed side effects were partially attributed to Notch signaling. However, the effect on other γ-secretase substrates, such as the p75 neurotrophin receptor (p75NTR) has not been studied in detail. p75NTR is highly expressed in the basal forebrain cholinergic neurons (BFCNs) during all life. Here, we show that GSI treatment induces the oligomerization of p75CTF leading to the cell death of BFCNs, and that this event is dependent on TrkA activity. The oligomerization of p75CTF requires an intact cholesterol recognition sequence (CRAC) and the constitutive binding of TRAF6, which activates the JNK and p38 pathways. Remarkably, TrkA rescues from cell death by a mechanism involving the endocytosis of p75CTF. These results suggest that the inhibition of γ-secretase activity in aged patients, where the expression of TrkA in the BFCNs is already reduced, could accelerate cholinergic dysfunction and promote neurodegeneration.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Endocitosis , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secuencias de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Muerte Celular/efectos de los fármacos , Cicloheximida/farmacología , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína/efectos de los fármacos , Proteolisis , Receptor de Factor de Crecimiento Nervioso/química
4.
Transl Psychiatry ; 11(1): 1, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414379

RESUMEN

PIDD1 encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD-the protein bridging PIDD1 and caspase-2-have been reported in intellectual disability (ID), and in a form of lissencephaly. Here, we identified five families with ID from Iran, Pakistan, and India, with four different biallelic mutations in PIDD1, all disrupting the Death Domain (DD), through which PIDD1 interacts with CRADD or RIP1. Nonsense mutations Gln863* and Arg637* directly disrupt the DD, as does a missense mutation, Arg815Trp. A homozygous splice mutation in the fifth family is predicted to disrupt splicing upstream of the DD, as confirmed using an exon trap. In HEK293 cells, we show that both Gln863* and Arg815Trp mutants fail to co-localize with CRADD, leading to its aggregation and mis-localization, and fail to co-precipitate CRADD. Using genome-edited cell lines, we show that these three PIDD1 mutations all cause loss of PIDDosome function. Pidd1 null mice show decreased anxiety, but no motor abnormalities. Together this indicates that PIDD1 mutations in humans may cause ID (and possibly lissencephaly) either through gain of function or secondarily, due to altered scaffolding properties, while complete loss of PIDD1, as modeled in mice, may be well tolerated or is compensated for.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Discapacidad Intelectual , Animales , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Dominio de Muerte , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Células HEK293 , Humanos , India , Discapacidad Intelectual/genética , Ratones , Mutación
5.
Artículo en Inglés | MEDLINE | ID: mdl-31727679

RESUMEN

Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.


Asunto(s)
Caspasas/metabolismo , Ciclo Celular , Muerte Celular , Inflamación/metabolismo , Animales , Apoptosis , Diferenciación Celular , División Celular , Humanos , Inflamasomas , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo
6.
J Biol Chem ; 291(23): 12346-57, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27056327

RESUMEN

Dimerization of single span transmembrane receptors underlies their mechanism of activation. p75 neurotrophin receptor plays an important role in the nervous system, but the understanding of p75 activation mechanism is still incomplete. The transmembrane (TM) domain of p75 stabilizes the receptor dimers through a disulfide bond, essential for the NGF signaling. Here we solved by NMR the three-dimensional structure of the p75-TM-WT and the functionally inactive p75-TM-C257A dimers. Upon reconstitution in lipid micelles, p75-TM-WT forms the disulfide-linked dimers spontaneously. Under reducing conditions, p75-TM-WT is in a monomer-dimer equilibrium with the Cys(257) residue located on the dimer interface. In contrast, p75-TM-C257A forms dimers through the AXXXG motif on the opposite face of the α-helix. Biochemical and cross-linking experiments indicate that AXXXG motif is not on the dimer interface of p75-TM-WT, suggesting that the conformation of p75-TM-C257A may be not functionally relevant. However, rather than mediating p75 homodimerization, mutagenesis of the AXXXG motif reveals its functional role in the regulated intramembrane proteolysis of p75 catalyzed by the γ-secretase complex. Our structural data provide an insight into the key role of the Cys(257) in stabilization of the weak transmembrane dimer in a conformation required for the NGF signaling.


Asunto(s)
Proteínas de la Membrana/química , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptor de Factor de Crecimiento Nervioso/química , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Western Blotting , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Células HeLa , Humanos , Lípidos/química , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Micelas , Modelos Moleculares , Mutación , Oxidación-Reducción , Proteolisis , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo
7.
PLoS Biol ; 12(8): e1001918, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25093680

RESUMEN

The p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, is required as a co-receptor for the Nogo receptor (NgR) to mediate the activity of myelin-associated inhibitors such as Nogo, MAG, and OMgp. p45/NRH2/PLAIDD is a p75 homologue and contains a death domain (DD). Here we report that p45 markedly interferes with the function of p75 as a co-receptor for NgR. P45 forms heterodimers with p75 and thereby blocks RhoA activation and inhibition of neurite outgrowth induced by myelin-associated inhibitors. p45 binds p75 through both its transmembrane (TM) domain and DD. To understand the underlying mechanisms, we have determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. We have identified the residues involved in such interaction by NMR and co-immunoprecipitation. The DD of p45 binds the DD of p75 by electrostatic interactions. In addition, previous reports suggested that Cys257 in the p75 TM domain is required for signaling. We found that the interaction of the cysteine 58 of p45 with the cysteine 257 of p75 within the TM domain is necessary for p45-p75 heterodimerization. These results suggest a mechanism involving both the TM domain and the DD of p45 to regulate p75-mediated signaling.


Asunto(s)
Multimerización de Proteína , Receptor de Factor de Crecimiento Nervioso/química , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/química , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Cisteína/metabolismo , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Receptores de Superficie Celular/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Soluciones , Relación Estructura-Actividad , Regulación hacia Arriba
8.
Neurobiol Aging ; 34(11): 2623-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23796660

RESUMEN

Neurogenesis persists in the adult brain as a form of plasticity due to the existence of neural stem cells (NSCs). Alterations in neurogenesis have been found in transgenic Alzheimer's disease (AD) mouse models, but NSC activity and neurogenesis in sporadic AD models remains to be examined. We herein describe a remarkable increase in NSC proliferation in the forebrain of SAMP8, a non-transgenic mouse strain that recapitulates the transition from healthy aging to AD. The increase in proliferation is transient, precedes AD-like symptoms such as amyloid beta 1-42 [Aß(1-42)] increase or gliosis, and is followed by a steep decline at later stages. Interestingly, in vitro studies indicate that secreted Aß(1-42) and PI3K signaling may account for the early boost in NSC proliferation. Our results highlight the role of soluble Aß(1-42) peptide and PI3K in the autocrine regulation of NSCs, and further suggest that over-proliferation of NSCs before the appearance of AD pathology may underlie neurogenic failure during the age-related progression of the disease. These findings have implications for therapeutic approaches based on neurogenesis in AD.


Asunto(s)
Células Madre Adultas/fisiología , Envejecimiento/genética , Envejecimiento/patología , Péptidos beta-Amiloides/farmacología , Proliferación Celular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Células Madre Adultas/clasificación , Células Madre Adultas/efectos de los fármacos , Factores de Edad , Péptidos beta-Amiloides/metabolismo , Animales , Antígenos CD1/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Bromodesoxiuridina , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ventrículos Laterales/citología , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Mutantes , Fragmentos de Péptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA