Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(46): 42446-42455, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36440175

RESUMEN

New electrode materials for supercapacitor devices are the primary focus of current research into energy-storage devices. Besides, exact control of the proportions of these new materials while forming electrodes for coin cell supercapacitor devices is very important for the large-scale manufacturing or at industrial scale. Here we report a facile synthesis of CrOOH with ascorbic acid and explore an exact composition with reduced graphene oxide to achieve a highly efficient electrode material for supercapacitor devices. The rGO is synthesized by modified Hummer's method followed by reduction with ascorbic acid, whereas ultrasmall CrOOH nanoparticles result via hydrothermal treatment of the reactants Cr(NO3)3, NaOH, and ascorbic acid at 120 °C for 12 h. The ultrasmall CrOOH nanoparticles show an amorphous phase with particle size range 3-10 nm and a calculated band gap of 3.28 eV. Six different composites are prepared by varying the proportion of CrOOH and rGO materials and further utilized as active electrode materials for fabrication of the coin cell supercapacitor devices. We report the highest specific capacitance for the 70% CrOOH and 30% rGO composite that exhibits a capacitance of 199.8 mF cm-2 with a long cyclic stability up to the tested 10,000 charge/discharge cycles. The proposed supercapacitor device exhibits a high energy and power density of 8.26 Wh kg-1 and 3756.9 W kg-1, respectively, at Ragone Plot, showing the commercial viability of the device.

2.
ACS Omega ; 6(27): 17289-17298, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34278115

RESUMEN

The solvothermal synthesis of metal-organic frameworks (MOFs) often proceeds through competing crystallization pathways, and only partial control over the crystal nucleation and growth rates is possible. It challenges the use of MOFs as functional devices in free-space optics, where bulk single crystals of millimeter dimensions and high optical quality are needed. We develop a synthetic protocol to control the solvothermal growth of the MOF [Zn(3-ptz)2] n (MIRO-101), to obtain large single crystals with projected surface areas of up to 25 mm2 in 24 h, in a single reaction with in situ ligand formation. No additional cooling and growth steps are necessary. We propose a viable reaction mechanism for the formation of MIRO-101 crystals under acidic conditions, by isolating intermediate crystal structures that directly connect with the target MOF and reversibly interconverting between them. We also study the nucleation and growth kinetics of MIRO-101 using ex situ crystal image analysis. The synthesis parameters that control the size and morphology of our target MOF crystal are discussed. Our work deepens our understanding of MOF growth processes in solution and demonstrates the possibility of building MOF-based devices for future applications in optics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA