Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Food Res Int ; 186: 114314, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729708

RESUMEN

Variability in microbial growth is a keystone of modern Quantitative Microbiological Risk Assessment (QMRA). However, there are still significant knowledge gaps on how to model variability, with the most common assumption being that variability is constant. This is implemented by an error term (with constant variance) added on top of the secondary growth model (for the square root of the growth rate). However, this may go against microbial ecology principles, where differences in growth fitness among bacterial strains would be more prominent in the vicinity of the growth limits than at optimal growth conditions. This study coins the term "secondary models for variability", evaluating whether they should be considered in QMRA instead of the constant strain variability hypothesis. For this, 21 strains of Listeria innocua were used as case study, estimating their growth rate by the two-fold dilution method at pH between 5 and 10. Estimates of between-strain variability and experimental uncertainty were obtained for each pH using mixed-effects models, showing the lowest variability at optimal growth conditions, increasing towards the growth limits. Nonetheless, the experimental uncertainty also increased towards the extremes, evidencing the need to analyze both sources of variance independently. A secondary model was thus proposed, relating strain variability and pH conditions. Although the modelling approach certainly has some limitations that would need further experimental validation, it is an important step towards improving the description of variability in QMRA, being the first model of this type in the field.


Asunto(s)
Microbiología de Alimentos , Listeria , Listeria/crecimiento & desarrollo , Listeria/clasificación , Concentración de Iones de Hidrógeno , Modelos Biológicos , Recuento de Colonia Microbiana , Medición de Riesgo
3.
Int J Food Microbiol ; 403: 110341, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37543003

RESUMEN

In order to meet consumers´ demands for more natural foods and to find new methods to control foodborne pathogens in them, research is currently being focused on alternative preservation approaches, such as biopreservation with lactic acid bacteria (LAB). Here, a collection of lactic acid bacteria (LAB) isolates was characterized to identify potential biopreservative agents. Six isolates (one Lactococcus lactis, one Lacticaseibacillus paracasei and four Lactiplantibacillus plantarum) were selected based on their antimicrobial activity in in vitro assays. Whole genome sequencing showed that none of the six LAB isolates carried known virulence factors or acquired antimicrobial resistance genes, and that the L. lactis isolate was potentially a nisin Z producer. Growth of L. monocytogenes was successfully limited by L. lactis ULE383, L. paracasei ULE721 and L. plantarum ULE1599 throughout the shelf-life of cooked ham, meatloaf and roasted pork shoulder. These LAB isolates were also applied individually or as a cocktail at different inoculum concentrations (4, 6 and 8 log10 CFU/g) in challenge test studies involving cooked ham, showing a stronger anti-Listerial activity when a cocktail was used at 8 log10 CFU/g. Thus, a reduction of up to ~5.0 log10 CFU/g in L. monocytogenes growth potential was attained in cooked ham packaged under vacuum, modified atmosphere packaging or vacuum followed by high pressure processing (HPP). Only minor changes in color and texture were induced, although there was a significant acidification of the product when the LAB cultures were applied. Remarkably, this acidification was delayed when HPP was applied to the LAB inoculated batches. Metataxonomic analyses showed that the LAB cocktail was able to grow in the cooked ham and outcompete the indigenous microbiota, including spoilage microorganisms such as Brochothrix. Moreover, none of the batches were considered unacceptable in a sensory evaluation. Overall, this study shows the favourable antilisterial activity of the cocktail of LAB employed, with the combination of HPP and LAB achieving a complete inhibition of the pathogen with no detrimental effects in physico-chemical or sensorial evaluations, highlighting the usefulness of biopreservation approaches involving LAB for enhancing the safety of cooked meat products.


Asunto(s)
Lactobacillales , Listeria monocytogenes , Productos de la Carne , Productos de la Carne/microbiología , Microbiología de Alimentos , Conservación de Alimentos/métodos , Vacio , Recuento de Colonia Microbiana , Embalaje de Alimentos/métodos
4.
Crit Rev Microbiol ; 49(6): 764-785, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36369718

RESUMEN

The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Homeostasis , Sistema Inmunológico , Regeneración
5.
Crit Rev Food Sci Nutr ; 63(29): 9995-10013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35611888

RESUMEN

In the world of highly processed foods, special attention is drawn to the nutrient composition and safety of consumed food products. Foods fortified with probiotic bacteria confer beneficial effects on human health and are categorized as functional foods. The salubrious activities of probiotics include the synthesis of vital bioactives, prevention of inflammatory diseases, anticancerous, hypocholesterolemic, and antidiarrheal effects. Soy foods are exemplary delivery vehicles for probiotics and prebiotics and there are diverse strategies to enhance their functionality like employing mixed culture fermentation, engineering probiotics, and incorporating prebiotics in fermented soy foods. High potential is ascribed to the concurrent use of probiotics and prebiotics in one product, termed as "synbiotics," which implicates synergy, in which a prebiotic ingredient particularly favors the growth and activity of a probiotic micro-organism. The insights on emended bioactive profile, metabolic role, and potential health benefits of advanced soy-based probiotic and synbiotic hold a promise which can be profitably implemented to meet consumer needs. This article reviews the available knowledge about strategies to enhance the nutraceutical potential, mechanisms, and health-promoting effects of advanced soy-based probiotics. Traditional fermentation merged with diverse strategies to improve the efficiency and health benefits of probiotics considered vital, are also discussed.


Asunto(s)
Alimentos Fermentados , Probióticos , Alimentos de Soja , Simbióticos , Humanos , Prebióticos
6.
Crit Rev Microbiol ; 48(4): 463-488, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34591726

RESUMEN

The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Dieta , Interacciones Microbiota-Huesped , Humanos , Dispositivos Laboratorio en un Chip
7.
BMC Microbiol ; 21(1): 242, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488633

RESUMEN

BACKGROUND: SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples. RESULTS: Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool. CONCLUSIONS: Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19 , Heces/virología , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Humanos , Límite de Detección
8.
Adv Appl Microbiol ; 114: 37-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33934852

RESUMEN

Yeasts and humans have had a close relationship for millenia. Yeast have been used for food production since the first human societies. Since then, alternative uses have been discovered. Nowadays, antibiotic resistance constitutes a pressing need worldwide. In order to overcome this threat, one of the most important strategies is the search for new antimicrobials in natural sources. Moreover, biopreservation based on natural sources has emerged as an alternative to more common chemical preservatives. Yeasts constitute an underexploited source of antagonistic activity against other microorganisms. Here, we compile a summary of the antagonistic activity of yeast origin against other yeast and other microorganisms, such as bacteria or parasites. We present the mechanisms of action used by yeasts to display these activities. We also provide applications of these antagonistic activities in food industry and agriculture, medicine and veterinary, where yeast promise to play a pivotal role in the near future.


Asunto(s)
Antiinfecciosos , Levaduras , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias/genética , Conservantes de Alimentos , Humanos , Saccharomyces cerevisiae
9.
Front Neurosci ; 14: 578666, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117122

RESUMEN

There is increasing evidence suggesting a link between the autism spectrum disorder (ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have shown that patients diagnosed with ASD display alterations of the gut microbiota. These alterations do not only extend to the gut microbiota composition but also to the metabolites they produce, as a result of its connections with diet and the bidirectional interaction with the host. Thus, production of metabolites and neurotransmitters stimulate the immune system and influence the central nervous system (CNS) by stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review we compose an overview of the interconnectivity of the different GI-related elements that have been associated with the development and severity of the ASD in patients and animal models. We review potential biomarkers to be used in future studies to unlock further connections and interventions in the treatment of ASD.

10.
Front Microbiol ; 11: 688, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373098

RESUMEN

Staphylococcus epidermidis is a commensal species that has been increasingly identified as a nosocomial agent. Despite the interest, little is known about the ability of S. epidermidis isolates to adapt to different ecological niches through comparisons at genotype or phenotype levels. One niche where S. epidermidis has been reported is the human gut. Here, we present three S. epidermidis strains isolated from feces and show that they are not phylogenetically distinct from S. epidermidis isolated from other human body sites. Both gut and skin strains harbored multiple genes associated with biofilm formation and showed similar levels of biofilm formation on abiotic surfaces. High-throughput physiological tests using the BIOLOG technology showed no major metabolic differences between isolates from stool, skin, or cheese, while an isolate from bovine mastitis showed more phenotypic variation. Gut and skin isolates showed the ability to metabolize glycine-conjugated bile acids and to grow in the presence of bile, but the gut isolates exhibited faster anaerobic growth compared to isolates of skin origin.

11.
Artículo en Inglés | MEDLINE | ID: mdl-32257965

RESUMEN

Fungi have been used since ancient times in food and beverage-making processes and, more recently, have been harnessed for the production of antibiotics and in processes of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key component of the human microbiome. However, fungi are also responsible for human infections. The incidence of community-acquired and nosocomial fungal infections has increased considerably in recent decades. Antibiotic resistance development, the increasing number of immunodeficiency- and/or immunosuppression-related diseases and limited therapeutic options available are triggering the search for novel alternatives. These new antifungals should be less toxic for the host, with targeted or broader antimicrobial spectra (for diseases of known and unknown etiology, respectively) and modes of actions that limit the potential for the emergence of resistance among pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties, i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their efficacy and high selectivity. In this review, we provide an overview of the bioactivity and classification of AFPs (natural and synthetic) as well as their mode of action and advantages over current antifungal drugs. Additionally, natural, heterologous and synthetic production of AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of these peptides, along with the future challenges relating to antifungal treatments.


Asunto(s)
Micosis , Preparaciones Farmacéuticas , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Hongos , Humanos , Micosis/tratamiento farmacológico , Péptidos
12.
Sci Rep ; 10(1): 3738, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111904

RESUMEN

Nisin P is a natural nisin variant, the genetic determinants for which were previously identified in the genomes of two Streptococcus species, albeit with no confirmed evidence of production. Here we describe Streptococcus agalactiae DPC7040, a human faecal isolate, which exhibits antimicrobial activity against a panel of gut and food isolates by virtue of producing nisin P. Nisin P was purified, and its predicted structure was confirmed by nanoLC-MS/MS, with both the fully modified peptide and a variant without rings B and E being identified. Additionally, we compared its spectrum of inhibition and minimum inhibitory concentration (MIC) with that of nisin A and its antimicrobial effect in a faecal fermentation in comparison with nisin A and H. We found that its antimicrobial activity was less potent than nisin A and H, and we propose a link between this reduced activity and the peptide structure.


Asunto(s)
Bacteriocinas/biosíntesis , Nisina/biosíntesis , Streptococcus agalactiae/metabolismo , Bacteriocinas/química , Humanos , Nisina/química , Streptococcus agalactiae/aislamiento & purificación
13.
Appl Microbiol Biotechnol ; 104(9): 3869-3884, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32170384

RESUMEN

Bacteriocins are antimicrobial peptides produced by bacteria, and their production is regarded as a desirable probiotic trait. We found that Lactobacillus gasseri LM19, a strain isolated from human milk, produces several bacteriocins, including a novel bacteriocin, gassericin M. These bacteriocins were purified from culture and synthesised to investigate their activity and potential synergy. L. gasseri LM19 was tested in a complex environment mimicking human colon conditions; it not only survived, but expressed the seven bacteriocin genes and produced short-chain fatty acids. Metagenomic analysis of these in vitro colon cultures showed that co-inoculation of L. gasseri LM19 with Clostridium perfringens gave 16S ribosomal RNA metagenomic profiles with more similarity to controls than to vessels inoculated with C. perfringens alone. These results indicate that L. gasseri LM19 could be an interesting candidate for maintaining homeostasis in the gut environment.


Asunto(s)
Antibacterianos/biosíntesis , Bacteriocinas/biosíntesis , Lactobacillus gasseri/metabolismo , Leche Humana/microbiología , Probióticos/metabolismo , Colon/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Lactobacillus gasseri/genética , Metagenoma , Familia de Multigenes , Técnicas de Cultivo de Órganos
14.
Microorganisms ; 8(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881756

RESUMEN

The production of bacteriocin is considered to be a probiotic trait of lactic acid bacteria (LAB). However, not all strains of LAB harbour bacteriocin genes, even within the same species. Moreover, the effects of bacteriocins on the host gut microbiota and on host physiological indicators are rarely studied. This study evaluated the effects of the bacteriocin-producing Lactobacillus acidophilus strain JCM1132 and its non-producing spontaneous mutant, L. acidophilus CCFM720, on the physiological statuses and gut microbiota of healthy mice. Mice that received the bacteriocin-producing strain JCM1132 exhibited reduced water and food intake. Furthermore, the administration of these strains induced significant changes in the compositional abundance of faecal microbiota at the phylum and genus levels, and some of these changes were more pronounced after one week of withdrawal. The effects of CCFM720 treatment on the gut microbiota seemed to favour the prevention of metabolic diseases to some extent. However, individuals that received JCM1132 treatment exhibited weaker inflammatory responses than those that received CCFM720 treatment. Our results indicate that treatment with bacteriocin-producing or non-producing strains can have different effects on the host. Accordingly, this trait should be considered in the applications of LAB.

15.
Gut Microbes ; 10(1): 1-21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29584555

RESUMEN

Bacteria, Archaea, Eukarya and viruses coexist in the human gut, and this coexistence is functionally balanced by symbiotic or antagonistic relationships. Antagonism is often characterized by the production of antimicrobials against other organisms occupying the same environmental niche. Indeed, close co-evolution in the gut has led to the development of specialized antimicrobials, which is attracting increased attention as these may serve as novel alternatives to antibiotics and thereby help to address the global problem of antimicrobial resistance. The gastrointestinal (GI) tract is especially suitable for finding novel antimicrobials due to the vast array of microbes that inhabit it, and a considerable number of antimicrobial producers of both wide and narrow spectrum have been described. In this review, we summarize some of the antimicrobial compounds that are produced by bacteria isolated from the gut environment, with a special focus on bacteriocins. We also evaluate the potential therapeutic application of these compounds to maintain homeostasis in the gut and the biocontrol of pathogenic bacteria.


Asunto(s)
Antiinfecciosos/metabolismo , Bacterias/metabolismo , Bacteriocinas/metabolismo , Microbioma Gastrointestinal/fisiología , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/química , Bacterias/efectos de los fármacos , Bacteriocinas/aislamiento & purificación , Bacteriocinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis , Humanos , Simbiosis
16.
Faraday Discuss ; 202: 391-402, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28682402

RESUMEN

Plant cell wall materials derived from a range of waste biomass sources have great potential as a source of sustainable alternatives to petrochemicals. Perhaps the most straightforward way of realising this potential would be to hydrolyse the most efficiently fermentable polymers into their constituent sugars and use yeast to ferment these into useful chemicals. However, it also makes sense to pre-extract components which have a greater value in polymeric form. This is particularly true for non-cellulosic polymers, which are rich in poorly-fermentable pentose sugars. Liquid hot water (LHW) pretreatment can be used to extract non-cellulosic carbohydrates in a cost-effective manner, leaving a cellulose-rich substrate which is easier to hydrolyse using commercial cellulases. However, inherent differences in the plant cell wall structure and composition mean that some biomass sources may be more suitable for exploitation than others. Here, we examine eight different feedstocks (two each from hardwood, softwood, cereal straws and dicotyledonous crops), expose them to 26 different LHW pretreatment conditions and hydrolyse the entire pretreated slurry with a commercial cellulase. This enables side-by-side comparisons, in terms of saccharification yield, of the feedstocks. The results clearly demonstrate considerable differences in suitability between the feedstocks, in relation to the quantity of products released and the processes needed to obtain them.


Asunto(s)
Polímeros/química , Microondas , Temperatura
17.
Proc Natl Acad Sci U S A ; 114(26): 6860-6865, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607074

RESUMEN

Genetic improvement of the plant cell wall has enormous potential to increase the quality of food, fibers, and fuels. However, the identification and characterization of genes involved in plant cell wall synthesis is far from complete. Association mapping is one of the few techniques that can help identify candidate genes without relying on our currently incomplete knowledge of cell wall synthesis. However, few cell wall phenotyping methodologies have proven sufficiently precise, robust, or scalable for association mapping to be conducted for specific cell wall polymers. Here, we created high-density carbohydrate microarrays containing chemically extracted cell wall polysaccharides collected from 331 genetically diverse Brassica napus cultivars and used them to obtain detailed, quantitative information describing the relative abundance of selected noncellulosic polysaccharide linkages and primary structures. We undertook genome-wide association analysis of data collected from 57 carbohydrate microarrays and identified molecular markers reflecting a diversity of specific xylan, xyloglucan, pectin, and arabinogalactan moieties. These datasets provide a detailed insight into the natural variations in cell wall carbohydrate moieties between B. napus genotypes and identify associated markers that could be exploited by marker-assisted breeding. The identified markers also have value beyond B. napus for functional genomics, facilitated by the close genetic relatedness to the model plant Arabidopsis Together, our findings provide a unique dissection of the genetic architecture that underpins plant cell wall biosynthesis and restructuring.


Asunto(s)
Brassica napus/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Carbohidratos , Pared Celular/metabolismo , Bases de Datos Factuales , Análisis por Micromatrices , Especificidad de la Especie
18.
PLoS One ; 11(3): e0150687, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26930214

RESUMEN

The metabolism of S. Typhimurium within infected host cells plays a fundamental role in virulence since it enables intracellular proliferation and dissemination and affects the innate immune response. An essential requirement for the intracellular replication of S. Typhimurium is the need to regenerate ATP. The metabolic route used to fulfil this requirement is the subject of the present study. For infection models we used human and murine epithelial and macrophage cell lines. The epithelial cell lines were mICc12, a transimmortalised murine colon enterocyte cell line that shows many of the characteristics of a primary epithelial cell line, and HeLa cells. The model macrophage cell lines were THP-1A human monocyte/macrophages and RAW 264.7 murine macrophages. Using a mutational approach combined with an exometabolomic analysis, we showed that neither fermentative metabolism nor anaerobic respiration play major roles in energy generation in any of the cell lines studied. Rather, we identified overflow metabolism to acetate and lactate as the foremost route by which S. Typhimurium fulfils its energy requirements.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mucosa Intestinal/microbiología , Macrófagos/microbiología , Salmonella typhimurium/metabolismo , Adenosina Trifosfato/fisiología , Animales , Línea Celular , Glucólisis , Células HeLa , Humanos , Mucosa Intestinal/citología , Redes y Vías Metabólicas/fisiología , Metabolómica , Ratones , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/fisiología , Ubiquinona/metabolismo
19.
PLoS One ; 10(7): e0131935, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26136211

RESUMEN

Guide RNA molecules (crRNA) produced from clustered regularly interspaced short palindromic repeat (CRISPR) arrays, altogether with effector proteins (Cas) encoded by cognate cas (CRISPR associated) genes, mount an interference mechanism (CRISPR-Cas) that limits acquisition of foreign DNA in Bacteria and Archaea. The specificity of this action is provided by the repeat intervening spacer carried in the crRNA, which upon hybridization with complementary sequences enables their degradation by a Cas endonuclease. Moreover, CRISPR arrays are dynamic landscapes that may gain new spacers from infecting elements or lose them for example during genome replication. Thus, the spacer content of a strain determines the diversity of sequences that can be targeted by the corresponding CRISPR-Cas system reflecting its functionality. Most Escherichia coli strains possess either type I-E or I-F CRISPR-Cas systems. To evaluate their impact on the pathogenicity of the species, we inferred the pathotype and pathogenic potential of 126 strains of this and other closely related species and analyzed their repeat content. Our results revealed a negative correlation between the number of I-E CRISPR units in this system and the presence of pathogenicity traits: the median number of repeats was 2.5-fold higher for commensal isolates (with 29.5 units, range 0-53) than for pathogenic ones (12.0, range 0-42). Moreover, the higher the number of virulence factors within a strain, the lower the repeat content. Additionally, pathogenic strains of distinct ecological niches (i.e., intestinal or extraintestinal) differ in repeat counts. Altogether, these findings support an evolutionary connection between CRISPR and pathogenicity in E. coli.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , ADN Bacteriano/genética , Escherichia/genética , Genoma Bacteriano , Genómica , Hibridación de Ácido Nucleico , Filogenia , Shigella/genética , Especificidad de la Especie , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA