Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Water Res ; 259: 121832, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38852395

RESUMEN

The presence of antibiotics in aquatic ecosystems poses a significant concern for public health and aquatic life, owing to their contribution to the proliferation of antibiotic-resistant bacteria. Effective wastewater treatment strategies are needed to ensure that discharges from pharmaceutical manufacturing facilities are adequately controlled. Here we propose the sequential use of nanofiltration (NF) for concentrating a real pharmaceutical effluent derived from azithromycin production, followed by electrochemical oxidation for thorough removal of pharmaceutical compounds. The NF membrane demonstrated its capability to concentrate wastewater at a high recovery value of 95 % and 99.7 ± 0.2 % rejection to azithromycin. The subsequent electrochemical oxidation process completely degraded azithromycin in the concentrate within 30 min and reduced total organic carbon by 95 % in 180 min. Such integrated treatment approach minimized the electrochemically-treated volume through a low-energy membrane approach and enhanced mass transfer towards the electrodes, therefore driving the process toward zero-liquid-discharge objectives. Overall, our integrated approach holds promises for cost-effective and sustainable removal of trace pharmaceutical compounds and other organics in pharmaceutical wastewater.

2.
Chemosphere ; 353: 141492, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387665

RESUMEN

In this work, a TiO2-decorated electrode was fabricated by dip coating activated carbon fibers (ACF) with TiO2, which were then used as a cathode for the photoelectro-Fenton (PEF) treatment of the pharmaceutical enalapril, an angiotensin-converting enzyme inhibitor that has been detected in several waterways. The TiO2 coating was found to principally improve the electrocatalytic properties of ACF for H2O2 production via the 2-e- O2 reduction, in turn increasing enalapril degradation by PEF. The effect of the current density on the mineralization of enalapril was evaluated and the highest TOC removal yield (80.5% in 3 h) was obtained at 8.33 mA cm-2, in the presence of 0.5 mmol L-1 of Fe2+ catalyst. Under those conditions, enalapril was totally removed within the first 10 min of treatment with a rate constant k = 0.472 min-1. In contrast, uncoated ACF only achieved 60% of TOC removal in 3 h at 8.33 mA cm-2. A degradation pathway for enalapril mineralization is proposed, based on the degradation by-products identified during treatment. Overall, the results demonstrate the promises of TiO2 cathodes for PEF, a strategy that has often been overlooked in favor of photoelectrocatalysis (PEC) based on TiO2-modified photoanodes.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Hierro , Carbón Orgánico , Enalapril , Fibra de Carbono , Peróxido de Hidrógeno , Electrodos , Preparaciones Farmacéuticas , Oxidación-Reducción
3.
Water Res ; 252: 121180, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301523

RESUMEN

This study proposes a sustainable approach for hard-to-treat wastewater using sintered activated carbon (SAC) both as an adsorption filter and as an electrode, allowing its simultaneous electrochemical regeneration. SAC improves the activated carbon (AC) particle contact and thus the conductivity, while maintaining optimal liquid flow. The process removed 87 % of total organic carbon (TOC) from real high-load (initial TOC of 1625 mg/L) pharmaceutical wastewater (PWW), generated during the manufacturing of azithromycin, in 5 h, without external input of chemicals other than catalytic amounts of Fe(II). Kinetic modelling indicated that adsorption was the dominant process, while concomitant electrochemical degradation of complex organics first converted them to short-chain acids, followed by their full mineralization. In-situ electrochemical regeneration of SAC, taking place at the same time as the treatment, is a key feature of our process, enhancing its performance and ensuring its stable operation over time, while eliminating cleaning downtimes altogether. The energy consumption of this innovative process was remarkably low at 8.0×10-3 kWh gTOC-1. This study highlights the potential of SAC for treating hard-to-treat effluents by concurrent adsorption and mineralization of organics.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Eliminación de Residuos Líquidos , Carbón Orgánico , Adsorción , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas
4.
J Hazard Mater ; 424(Pt A): 127403, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879586

RESUMEN

To improve cathodic H2O2 accumulation and Fe3+ reduction synchronously in the electro-Fenton (EF) process, a microbubble-assisted rotary tubular titanium cathode (MRTTC) was designed for the first time. By utilizing this MRTTC, H2O2 accumulation improved by 4.05-fold, along with a 200% enhancement in iron reduction compared to the conventional EF process. This promotion is mainly attributed to a considerably higher oxygen mass transfer, which reduces the thickness of the adhered diffusion layer. The oxygen mass transfer coefficient (KLa) also improved from 0.0073 s-1 to 0.012 s-1 at a rotational speed of 300 rpm. In addition, the microbubble-assisted cathode further improved the KLa to 0.047 s-1. The synergistic effect between the rotating and microbubble-assisted cathodes further intensified H2O2 accumulation in MRTTC. Apart from H2O2 promotion, the iron reduction rate was elevated because the newly formed O2-• provided an additional reduction pathway for Fe3+ reduction in addition to the cathodic path. The effectiveness of MRTTC was confirmed by treating a benchmark organic pollutant, sulfamerazine (SMR), where approximately 100% SMR decay was obtained in 3 h. The results show that MRTTC is a novel and promising design in EF for antibiotic wastewater treatment.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Electrodos , Hierro , Microburbujas , Oxidación-Reducción , Titanio , Contaminantes Químicos del Agua/análisis
5.
J Hazard Mater ; 396: 122641, 2020 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-32339874

RESUMEN

We propose an unconventional electro-Fenton (EF) system with a nickel-foam (Ni-F) cathode and tripolyphosphate (3-PP) electrolyte at near-neutral pH (EF/Ni-F-3-PP) to overcome pH restrictions in EF while preventing Ni-F corrosion. Response surface modelling was used to optimize the main operating parameters with a model prediction analysis (R2 = 0.99): pH = 5.8, Fe2+ = 3.0 mM and applied current = 349.6 mA. Among the three variables, the pH exerted the highest influence on the process. Under optimal conditions, 100 % of phenol removal was achieved in 25 min with a pseudo-first-order apparent rate constant (kapp) of 0.2 min-1, 3.2-fold higher than the kapp of EF/Ni-F with SO42- electrolyte at pH 3. A mineralization yield of 81.5 % was attained after 2 h; furthermore, it was found that 3-PP enhanced H2O2 accumulation by preventing bulk H2O2 decomposition. Finally, toxicity evaluation revealed the formation of toxic by-products at the early stages of treatment, which were totally depleted after 2 h, demonstrating the detoxifying capacity of the system. In conclusion, this study shows for the first time the potential of Ni-F as a cathode for EF under near-neutral conditions, rendered possible by the 3PP electrolyte. Under these conditions, the Ni-F corrosion issue could be alleviated.

6.
J Hazard Mater ; 377: 249-258, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31170573

RESUMEN

For the first time, a biomass-derived porous carbon cathode (WDC) was fabricated via a facile one-step pyrolysis of recovered wood-waste without any post-treatment. The WDC along with pyrophosphate (PP) as electrolyte were used in electro-Fenton (EF) at pH 8 for sulfathiazole (STZ) treatment. The H2O2 accumulation capacity of WDC was optimized via the following parameters: pyrolysis temperature, applied current and electrolyte. Results showed that the WDC cathode prepared at 900 °C achieved the highest H2O2 accumulation (13.80 mg L-1 in 3 h) due to its larger electroactive surface area (28.81 cm2). Interestingly, it was found that PP decreased the decomposition rate of H2O2 in solution as compared to conventional electrolyte, which resulted in higher H2O2 accumulation. PP allowed operating EF at pH of 8 due to the formation of Fe2+-PP complexes in solution. Moreover, Fe2+-PP was able to activate oxygen to produce OH. In this way, the degradation of STZ took place through four main pathways: 1) via OH from the Fe2+-PP complex, 2) via OH from EF reactions, 3) via surface OH at the boron doped diamond electrode (BDD) and 4) via SO4- from BDD activation. Finally, microtox tests revealed that some toxic intermediates were generated during WDC/BDD/PP EF treatment, but they were removed at the end of the process.


Asunto(s)
Carbón Orgánico/química , Difosfatos/química , Sulfatiazol/química , Madera/química , Biomasa , Electrodos , Electrólitos , Compuestos Férricos/química , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Radical Hidroxilo , Hierro , Soluciones
7.
Chemosphere ; 201: 687-696, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29547857

RESUMEN

A composite nickel-iron-foam (Ni-Fe-F) electrode was used as a cathode in the electro-Fenton (EF) process at circum-neutral pH in the presence of sodium tripolyphosphate (TPP) as supporting electrolyte. It was found that phenol degradation was dramatically improved by the synergistic effect of Ni-Fe-F and TPP, reaching 100% removal in 40 min, with kapp = (8.90 ±â€¯0.12) × 10-2 min-1, which was about 18 times higher than that of Ni-Fe-F with sulfate as conventional electrolyte at pH 3.00 (kapp = (5.00 ±â€¯0.14) × 10-3 min-1). A (75.00 ±â€¯1.67)% mineralization yield was attained after 4-h treatment time. Ni-Fe-F proved capable of providing the Fe2+ ions necessary to catalyze the Fenton's reaction via a controlled chemical/electrochemical redox process. In addition, Ni-Fe-F promoted the chemical and electrochemical generation of H2O2. With respect to TPP, its chelation with Fe ions prevented iron precipitation at neutral and higher pH values, extending the pH range of the Fenton's reaction. Furthermore, the TPP ligand promoted the activation of molecular O2 for the chemical production of OH, enhancing the process efficiency. By overcoming these common limitations of conventional EF in K2SO4 electrolyte, the Ni-Fe-F/TPP system represents a more sustainable alternative for practical application of EF. A degradation pathway for phenol mineralization with homogeneous and heterogeneous OH produced by the EF Ni-Fe-F/TPP system is proposed based on the identification of the oxidation by-products.


Asunto(s)
Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno/química , Hierro/química , Níquel/química , Fenol/análisis , Polifosfatos/química , Contaminantes Químicos del Agua/análisis , Catálisis , Electrodos , Concentración de Iones de Hidrógeno , Modelos Teóricos , Oxidación-Reducción , Fenol/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA