Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
JAMA Oncol ; 7(10): 1521-1528, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410295

RESUMEN

IMPORTANCE: Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations. OBJECTIVE: To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021. EXPOSURES: Focal 22q11.22 deletions. MAIN OUTCOMES AND MEASURES: Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VPREB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040). RESULTS: This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P < .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05). CONCLUSIONS AND RELEVANCE: This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Estudios de Cohortes , Femenino , Eliminación de Gen , Humanos , Factor de Transcripción Ikaros/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico
2.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301870

RESUMEN

Genome-wide association studies have identified the chromosome 10q26 (Chr10) locus, which contains the age-related maculopathy susceptibility 2 (ARMS2) and high temperature requirement A serine peptidase 1 (HTRA1) genes, as the strongest genetic risk factor for age-related macular degeneration (AMD) [L.G. Fritsche et al., Annu. Rev. Genomics Hum. Genet. 15, 151-171, (2014)]. To date, it has been difficult to assign causality to any specific single nucleotide polymorphism (SNP), haplotype, or gene within this region because of high linkage disequilibrium among the disease-associated variants [J. Jakobsdottir et al. Am. J. Hum. Genet. 77, 389-407 (2005); A. Rivera et al. Hum. Mol. Genet. 14, 3227-3236 (2005)]. Here, we show that HTRA1 messenger RNA (mRNA) is reduced in retinal pigment epithelium (RPE) but not in neural retina or choroid tissues derived from human donors with homozygous risk at the 10q26 locus. This tissue-specific decrease is mediated by the presence of a noncoding, cis-regulatory element overlapping the ARMS2 intron, which contains a potential Lhx2 transcription factor binding site that is disrupted by risk variant rs36212733. HtrA1 protein increases with age in the RPE-Bruch's membrane (BM) interface in Chr10 nonrisk donors but fails to increase in donors with homozygous risk at the 10q26 locus. We propose that HtrA1, an extracellular chaperone and serine protease, functions to maintain the optimal integrity of the RPE-BM interface during the aging process and that reduced expression of HTRA1 mRNA and protein in Chr10 risk donors impairs this protective function, leading to increased risk of AMD pathogenesis. HtrA1 augmentation, not inhibition, in high-risk patients should be considered as a potential therapy for AMD.


Asunto(s)
Predisposición Genética a la Enfermedad , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/metabolismo , Coroides/metabolismo , Variación Genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Desequilibrio de Ligamiento , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo
3.
Mol Cancer Res ; 15(11): 1517-1530, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28720588

RESUMEN

Ewing sarcoma is a bone malignancy driven by a translocation event resulting in the fusion protein EWS/FLI1 (EF). EF functions as an aberrant and oncogenic transcription factor that misregulates the expression of thousands of genes. Previous work has focused principally on determining important transcriptional targets of EF, as well as characterizing important regulatory partnerships in EF-dependent transcriptional programs. Less is known, however, about EF-dependent metabolic changes or their role in Ewing sarcoma biology. Therefore, the metabolic effects of silencing EF in Ewing sarcoma cells were determined. Metabolomic analyses revealed distinct separation of metabolic profiles in EF-knockdown versus control-knockdown cells. Mitochondrial stress tests demonstrated that knockdown of EF increased respiratory as well as glycolytic functions. Enzymes and metabolites in several metabolic pathways were altered, including de novo serine synthesis and elements of one-carbon metabolism. Furthermore, phosphoglycerate dehydrogenase (PHGDH) was found to be highly expressed in Ewing sarcoma and correlated with worse patient survival. PHGDH knockdown or pharmacologic inhibition in vitro caused impaired proliferation and cell death. Interestingly, PHGDH modulation also led to elevated histone expression and methylation. These studies demonstrate that the translocation-derived fusion protein EF is a master regulator of metabolic reprogramming in Ewing sarcoma, diverting metabolites toward biosynthesis. As such, these data suggest that the metabolic aberrations induced by EF are important contributors to the oncogenic biology of these tumors.Implications: This previously unexplored role of EWS/FLI1-driven metabolic changes expands the understanding of Ewing sarcoma biology, and has potential to significantly inform development of therapeutic strategies. Mol Cancer Res; 15(11); 1517-30. ©2017 AACR.


Asunto(s)
Neoplasias Óseas/metabolismo , Metabolómica/métodos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/metabolismo , Neoplasias Óseas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Redes y Vías Metabólicas , Fosfoglicerato-Deshidrogenasa/metabolismo , Sarcoma de Ewing/genética , Transducción de Señal , Regulación hacia Arriba
4.
Oncotarget ; 8(16): 26013-26026, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28148901

RESUMEN

CEBPB copy number gain in Ewing sarcoma was previously shown to be associated with worse clinical outcome compared to tumors with normal CEBPB copy number, although the mechanism was not characterized. We employed gene knockdown and rescue assays to explore the consequences of altered CEBPB gene expression in Ewing sarcoma cell lines. Knockdown of EWS-FLI1 expression led to a decrease in expression of all three C/EBPß isoforms while re-expression of EWS-FLI1 rescued C/EBPß expression. Overexpression of C/EBPß-1, the largest of the three C/EBPß isoforms, led to a significant increase in colony formation when cells were grown in soft agar compared to empty vector transduced cells. In addition, depletion of C/EBPß decreased colony formation, and re-expression of either C/EBPß-1 or C/EBPß-2 rescued the phenotype. We identified the cancer stem cell marker ALDH1A1 as a target of C/EBPß in Ewing sarcoma. Furthermore, increased expression of C/EBPß led to resistance to chemotherapeutic agents. In summary, we have identified CEBPB as an oncogene in Ewing sarcoma. Overexpression of C/EBPß-1 increases transformation, upregulates expression of the cancer stem cell marker ALDH1A1, and leads to chemoresistance.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , Transformación Celular Neoplásica/genética , Resistencia a Antineoplásicos/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Antineoplásicos/farmacología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Unión Proteica , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Retinal-Deshidrogenasa , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA