Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Diabetes ; 71(6): 1282-1298, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275988

RESUMEN

Excessive production of renal reactive oxygen species (ROS) plays a major role in diabetic kidney disease (DKD). Here, we provide key findings demonstrating the predominant pathological role of the pro-oxidant enzyme NADPH oxidase 5 (NOX5) in DKD, independent of the previously characterized NOX4 pathway. In patients with diabetes, we found increased expression of renal NOX5 in association with enhanced ROS formation and upregulation of ROS-sensitive factors early growth response 1 (EGR-1), protein kinase C-α (PKC-α), and a key metabolic gene involved in redox balance, thioredoxin-interacting protein (TXNIP). In preclinical models of DKD, overexpression of NOX5 in Nox4-deficient mice enhances kidney damage by increasing albuminuria and augmenting renal fibrosis and inflammation via enhanced ROS formation and the modulation of EGR1, TXNIP, ERK1/2, PKC-α, and PKC-ε. In addition, the only first-in-class NOX inhibitor, GKT137831, appears to be ineffective in the presence of NOX5 expression in diabetes. In vitro, silencing of NOX5 in human mesangial cells attenuated upregulation of EGR1, PKC-α, and TXNIP induced by high glucose levels, as well as markers of inflammation (TLR4 and MCP-1) and fibrosis (CTGF and collagens I and III) via reduction in ROS formation. Collectively, these findings identify NOX5 as a superior target in human DKD compared with other NOX isoforms such as NOX4, which may have been overinterpreted in previous rodent studies.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Ratones , NADPH Oxidasa 4/genética , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Biology (Basel) ; 10(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396868

RESUMEN

Oxidative stress and inflammation are considered major drivers in the pathogenesis of diabetic complications, including renal and cardiovascular disease. A symbiotic relationship also appears to exist between oxidative stress and inflammation. Several emerging therapies target these crucial pathways, to alleviate the burden of the aforementioned diseases. Oxidative stress refers to an imbalance between reactive oxygen species (ROS) and antioxidant defenses, a pathological state which not only leads to direct cellular damage but also an inflammatory cascade that further perpetuates tissue injury. Emerging therapeutic strategies tackle these pathways in a variety of ways, from increasing antioxidant defenses (antioxidants and Nrf2 activators) to reducing ROS production (NADPH oxidase inhibitors and XO inhibitors) or inhibiting the associated inflammatory pathways (NLRP3 inflammasome inhibitors, lipoxins, GLP-1 receptor agonists, and AT-1 receptor antagonists). This review summarizes the mechanisms by which oxidative stress and inflammation contribute to and perpetuate diabetes associated renal and cardiovascular disease along with the therapeutic strategies which target these pathways to provide reno and cardiovascular protection in the setting of diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA