Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Stem Cell Reports ; 18(12): 2418-2433, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37995703

RESUMEN

Although adult subependymal zone (SEZ) neural stem cells mostly generate GABAergic interneurons, a small progenitor population expresses the proneural gene Neurog2 and produces glutamatergic neurons. Here, we determined whether Neurog2 could respecify SEZ neural stem cells and their progeny toward a glutamatergic fate. Retrovirus-mediated expression of Neurog2 induced the glutamatergic lineage markers TBR2 and TBR1 in cultured SEZ progenitors, which differentiated into functional glutamatergic neurons. Likewise, Neurog2-transduced SEZ progenitors acquired glutamatergic neuron hallmarks in vivo. Intriguingly, they failed to migrate toward the olfactory bulb and instead differentiated within the SEZ or the adjacent striatum, where they received connections from local neurons, as indicated by rabies virus-mediated monosynaptic tracing. In contrast, lentivirus-mediated expression of Neurog2 failed to reprogram early SEZ neurons, which maintained GABAergic identity and migrated to the olfactory bulb. Our data show that NEUROG2 can program SEZ progenitors toward a glutamatergic identity but fails to reprogram their neuronal progeny.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células-Madre Neurales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/metabolismo , Diferenciación Celular , Bulbo Olfatorio/metabolismo , Neurogénesis/fisiología
2.
Methods Mol Biol ; 2352: 57-71, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324180

RESUMEN

Direct neuronal reprogramming is a promising strategy to generate various types of neurons that are, otherwise, inaccessible for researchers. However, the efficiency of neuronal conversion is highly dependent on the transcription factor used, the identity of the initial cells to convert, their species' background, and the neuronal subtype to which cells will convert. Regardless of these conditioning factors, the apoptotic regulator Bcl-2 acts as a pan-neuronal reprogramming enhancer. Bcl-2 mediates its effect in reprogramming by preventing an overshot of oxidative stress during the acquisition of a neuronal oxidative metabolism, thus reducing cell death by ferroptosis and facilitating the phenotypic conversion. In this chapter, we outline two methods to obtain either mouse or human neurons derived from postnatal astrocytes and skin fibroblasts, respectively. The overall reprogramming strategy is based on the co-expression of Bcl-2 and the transcription factor Neurog2 that produces mostly excitatory neurons. However, the method can be easily adapted to achieve alternative neuronal subtypes by using additional transcription factors, such as Isl1 for motor neurons. Therefore, our approaches provide solid but flexible platforms to obtain human and mouse induced neurons in vitro that can be applied to basic or translational research.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Técnicas de Reprogramación Celular , Reprogramación Celular/genética , Fibroblastos/citología , Neuronas/citología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Animales , Astrocitos/efectos de los fármacos , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Expresión Génica , Vectores Genéticos/genética , Humanos , Ratones , Neuronas/efectos de los fármacos , Retroviridae/genética , Transducción Genética , Transfección
3.
Methods Mol Biol ; 2150: 183-194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31020634

RESUMEN

A comprehensive understanding of the mechanisms controlling the behavior of cell populations with regenerative potential is the first step to design effective therapeutic strategies for many diseases. However, a precise description of the biological events involved, such as proliferation, differentiation, cell fate decisions, migration, or viability, may be hampered by the classical use of experiments based on end-point analysis. By contrast, live imaging and single cell tracking provides researchers with an accurate readout of these features in cells throughout an experiment. Here, we describe a protocol to apply time-lapse video microscopy and post-processing of the data to study critical aspects of the biology and the lineage progression of multiple neural populations.


Asunto(s)
Rastreo Celular , Microscopía por Video , Neuronas/citología , Análisis de la Célula Individual , Imagen de Lapso de Tiempo/métodos , Animales , Linaje de la Célula , Supervivencia Celular , Células Cultivadas , Procesamiento de Imagen Asistido por Computador
4.
J Vis Exp ; (130)2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29286427

RESUMEN

Understanding the mechanisms that control critical biological events of neural cell populations, such as proliferation, differentiation, or cell fate decisions, will be crucial to design therapeutic strategies for many diseases affecting the nervous system. Current methods to track cell populations rely on their final outcomes in still images and they generally fail to provide sufficient temporal resolution to identify behavioral features in single cells. Moreover, variations in cell death, behavioral heterogeneity within a cell population, dilution, spreading, or the low efficiency of the markers used to analyze cells are all important handicaps that will lead to incomplete or incorrect read-outs of the results. Conversely, performing live imaging and single cell tracking under appropriate conditions represents a powerful tool to monitor each of these events. Here, a time-lapse video-microscopy protocol, followed by post-processing, is described to track neural populations with single cell resolution, employing specific software. The methods described enable researchers to address essential questions regarding the cell biology and lineage progression of distinct neural populations.


Asunto(s)
Biología Celular/instrumentación , Linaje de la Célula/fisiología , Rastreo Celular/métodos , Microscopía por Video/métodos , Neuronas/ultraestructura , Análisis de la Célula Individual/métodos , Animales , Diferenciación Celular/fisiología , Técnicas Citológicas/métodos , Humanos , Monitoreo Fisiológico , Neuronas/citología
5.
Cell ; 171(2): 273-285, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985560

RESUMEN

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Asunto(s)
Muerte Celular , Animales , Apoptosis , Humanos , Hierro/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
6.
Development ; 144(24): 4604-4615, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29061639

RESUMEN

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific knockdown of LRP4 by in utero electroporation of LRP4 miRNA in vivo also resulted in neurons with fewer primary dendrites and a lower density of spines in the developing cortex and hippocampus. Collectively, our results demonstrate an essential and novel role of neuronal LRP4 in dendritic development and synaptogenesis in the CNS.


Asunto(s)
Corteza Cerebral/metabolismo , Dendritas/metabolismo , Hipocampo/metabolismo , Receptores de LDL/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/embriología , Técnicas de Inactivación de Genes , Hipocampo/citología , Hipocampo/embriología , Proteínas Relacionadas con Receptor de LDL , Ratones , Ratones Endogámicos C57BL , Rabia/patología , Virus de la Rabia/crecimiento & desarrollo , Receptores de LDL/genética
7.
Cell Stem Cell ; 21(1): 18-34, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28686866

RESUMEN

The ability to directly reprogram mature cells to alternative fates challenges concepts of how cell identities are maintained, erased, and acquired. Recent advances in understanding and overcoming hurdles to direct neuronal conversion have provided new insights into mechanisms that maintain cell identity programs and have enabled high efficiency reprogramming in vivo. We discuss key cell-intrinsic molecular and metabolic constraints that influence the establishment of a new identity as well as environmental inputs from injured brains that favor or harm the conversion process. Finally, we outline the challenges ahead with a particular focus on direct neuronal reprogramming in vivo.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Neuronas/metabolismo , Animales , Humanos , Neuronas/citología
8.
Neurogenesis (Austin) ; 4(1): e1285383, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28321434

RESUMEN

Combinations of neuronal determinants and/or small-molecules such as Forskolin (Fk) can be used to convert different cell types into neurons. As Fk is known to activate cAMP-dependent pathways including CREB-activity, we aimed here to determine the role of CREB in reprogramming - including its temporal profile. We show that transient expression of the dominant-positive CREB-VP16 followed by its inactivation mediated by the dominant-negative ICER improves neuronal conversion of astrocytes mediated by the neurogenic determinant Ascl1. Contrarily, persistent over-activation by CREB-VP16 or persistent inhibition by ICER interferes with neuronal reprogramming, with the latter enhancing cell death. Taken together our work shows transient CREB activation as a key effector in neuronal reprogramming.

9.
Development ; 143(14): 2494-510, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27436039

RESUMEN

The key signalling pathways and transcriptional programmes that instruct neuronal diversity during development have largely been identified. In this Review, we discuss how this knowledge has been used to successfully reprogramme various cell types into an amazing array of distinct types of functional neurons. We further discuss the extent to which direct neuronal reprogramming recapitulates embryonic development, and examine the particular barriers to reprogramming that may exist given a cell's unique developmental history. We conclude with a recently proposed model for cell specification called the 'Cook Islands' model, and consider whether it is a fitting model for cell specification based on recent results from the direct reprogramming field.


Asunto(s)
Reprogramación Celular , Desarrollo Embrionario , Neuronas/citología , Animales , Ciclo Celular , Humanos , Transducción de Señal , Transcripción Genética
10.
Cell Stem Cell ; 18(3): 396-409, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26748418

RESUMEN

Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Transducción Genética , Animales , Ratones , Neuroglía/citología , Neuronas/citología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/genética
11.
Cell Stem Cell ; 17(5): 624-34, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26456685

RESUMEN

Reactive astrocytes (RAs) have been reported to convert to multipotent neural stem cells (NSCs) capable of neurosphere (NS) formation and multilineage differentiation in vitro. Using genetic tagging, we determined that subventricular zone (SVZ) NSCs give rise to NSs derived from the stroke-injured cortex. We demonstrate that these cells can be isolated from the cortex in two different models of stroke and from different stroke-lesioned cortical regions. Interestingly, SVZ NSCs give rise to a subpopulation of RAs in the cortex that contribute to astrogliosis and scar formation. Last, we show that these SVZ derived RAs can be converted to neurons in vivo by forced expression of Ascl1. Identifying the contribution of cells originating from the SVZ to injury repair has implications for neural regeneration strategies.


Asunto(s)
Astrocitos/citología , Corteza Cerebral/citología , Ventrículos Laterales/citología , Células-Madre Neurales/citología , Accidente Cerebrovascular/patología , Animales , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Neuronas/patología , Accidente Cerebrovascular/metabolismo
12.
Glia ; 63(12): 2340-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26250529

RESUMEN

Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes.


Asunto(s)
Astrocitos/metabolismo , Galectina 1/metabolismo , Galectina 3/metabolismo , Corteza Somatosensorial/lesiones , Corteza Somatosensorial/metabolismo , Animales , Astrocitos/patología , Proliferación Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Galectina 1/genética , Galectina 3/genética , Perfilación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Sustancia Gris/lesiones , Sustancia Gris/metabolismo , Sustancia Gris/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Corteza Somatosensorial/patología , Nicho de Células Madre/fisiología
13.
Stem Cell Reports ; 3(6): 1000-14, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25458895

RESUMEN

The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX)(+) neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX(+) cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.


Asunto(s)
Transdiferenciación Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOXB1/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Reprogramación Celular/genética , Corteza Cerebral/lesiones , Proteína Doblecortina , Expresión Génica , Ratones , Factores de Transcripción SOXB1/metabolismo , Potenciales Sinápticos/genética
14.
Nat Cell Biol ; 15(6): 602-13, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23644466

RESUMEN

The adult mouse subependymal zone (SEZ) harbours adult neural stem cells (aNSCs) that give rise to neuronal and oligodendroglial progeny. However it is not known whether the same aNSC can give rise to neuronal and oligodendroglial progeny or whether these distinct progenies constitute entirely separate lineages. Continuous live imaging and single-cell tracking of aNSCs and their progeny isolated from the mouse SEZ revealed that aNSCs exclusively generate oligodendroglia or neurons, but never both within a single lineage. Moreover, activation of canonical Wnt signalling selectively stimulated proliferation within the oligodendrogliogenic lineage, resulting in a massive increase in oligodendrogliogenesis without changing lineage choice or proliferation within neurogenic clones. In vivo activation or inhibition of canonical Wnt signalling respectively increased or decreased the number of Olig2 and PDGFR- α positive cells, suggesting that this pathway contributes to the fine tuning of oligodendrogliogenesis in the adult SEZ.


Asunto(s)
Linaje de la Célula , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular , Diferenciación Celular , División Celular , Proliferación Celular , Células Cultivadas , Sistema Nervioso Central/embriología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Vía de Señalización Wnt , Proteína Wnt3/metabolismo
15.
Cell Stem Cell ; 11(4): 471-6, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23040476

RESUMEN

Reprogramming of somatic cells into neurons provides a new approach toward cell-based therapy of neurodegenerative diseases. A major challenge for the translation of neuronal reprogramming into therapy is whether the adult human brain contains cell populations amenable to direct somatic cell conversion. Here we show that cells from the adult human cerebral cortex expressing pericyte hallmarks can be reprogrammed into neuronal cells by retrovirus-mediated coexpression of the transcription factors Sox2 and Mash1. These induced neuronal cells acquire the ability of repetitive action potential firing and serve as synaptic targets for other neurons, indicating their capability of integrating into neural networks. Genetic fate-mapping in mice expressing an inducible Cre recombinase under the tissue-nonspecific alkaline phosphatase promoter corroborated the pericytic origin of the reprogrammed cells. Our results raise the possibility of functional conversion of endogenous cells in the adult human brain to induced neuronal fates.


Asunto(s)
Reprogramación Celular , Corteza Cerebral/citología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neurogénesis , Neuronas/citología , Pericitos/citología , Potenciales de Acción , Adulto , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Red Nerviosa , Enfermedades Neurodegenerativas/terapia , Retroviridae , Factores de Transcripción SOXB1/metabolismo , Trasplante de Células Madre , Transmisión Sináptica
16.
Nat Protoc ; 6(2): 214-28, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21293461

RESUMEN

Instructing glial cells to generate neurons may prove to be a strategy to replace neurons that have degenerated. Here, we describe a robust protocol for the efficient in vitro conversion of postnatal astroglia from the mouse cerebral cortex into functional, synapse-forming neurons. This protocol involves two steps: (i) expansion of astroglial cells (7 d) and (ii) astroglia-to-neuron conversion induced by persistent and strong retroviral expression of Neurog2 (encoding neurogenin-2) or Mash1 (also referred to as achaete-scute complex homolog 1 or Ascl1) and/or distal-less homeobox 2 (Dlx2) for generation of glutamatergic or GABAergic neurons, respectively (7-21 d for different degrees of maturity). Our protocol of astroglia-to-neuron conversion by a single neurogenic transcription factor provides a stringent experimental system to study the specification of a selective neuronal subtype, thus offering an alternative to the use of embryonic or neural stem cells. Moreover, it can be a useful model for studies of lineage conversion from non-neuronal cells, with potential for brain regenerative medicine.


Asunto(s)
Astrocitos/citología , Diferenciación Celular , Corteza Cerebral/citología , Neuronas/citología , Animales , Astrocitos/virología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Técnicas de Cultivo de Célula , Linaje de la Célula , Medios de Cultivo , Electrofisiología , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Vectores Genéticos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Medicina Regenerativa/métodos , Retroviridae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
PLoS Biol ; 8(5): e1000373, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20502524

RESUMEN

Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation.


Asunto(s)
Astrocitos/citología , Diferenciación Celular , Corteza Cerebral/citología , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas/citología , Adulto , Animales , Astrocitos/virología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Corteza Cerebral/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Neuroglía/virología , Retroviridae/genética , Células Madre/citología , Células Madre/fisiología , Sinapsis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética/métodos
18.
Nat Neurosci ; 12(12): 1524-33, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19881504

RESUMEN

The adult mouse subependymal zone (SEZ) harbors neural stem cells that are thought to exclusively generate GABAergic interneurons of the olfactory bulb. We examined the adult generation of glutamatergic juxtaglomerular neurons, which had dendritic arborizations that projected into adjacent glomeruli, identifying them as short-axon cells. Fate mapping revealed that these originate from Neurog2- and Tbr2-expressing progenitors located in the dorsal region of the SEZ. Examination of the progenitors of these glutamatergic interneurons allowed us to determine the sequential expression of transcription factors in these cells that are thought to be hallmarks of glutamatergic neurogenesis in the developing cerebral cortex and adult hippocampus. Indeed, the molecular specification of these SEZ progenitors allowed for their recruitment into the cerebral cortex after a lesion was induced. Taken together, our data indicate that SEZ progenitors not only produce a population of adult-born glutamatergic juxtaglomerular neurons, but may also provide a previously unknown source of progenitors for endogenous repair.


Asunto(s)
Células Madre Adultas/citología , Ácido Glutámico/fisiología , Interneuronas/citología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Células Madre Adultas/fisiología , Factores de Edad , Animales , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Encefalopatías/patología , Encefalopatías/fisiopatología , Linaje de la Célula/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Dendritas/fisiología , Epéndimo/citología , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Hipocampo/fisiología , Interneuronas/fisiología , Interneuronas/ultraestructura , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Dominio T Box/metabolismo , Ácido gamma-Aminobutírico/fisiología
19.
J Cell Sci ; 122(Pt 19): 3554-65, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19759287

RESUMEN

Functional and protein interactions between the N-methyl-D-aspartate type of glutamate receptor (NMDAR) and neurotrophin or ephrin receptors play essential roles in neuronal survival and differentiation. A shared downstream effector for neurotrophin- and ephrin-receptor signaling is kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS). Because this molecule is obligatory for neurotrophin-induced differentiation, we investigated whether Kidins220/ARMS and NMDAR functions were related. Here, we identify an association between these proteins and discover that excitotoxicity, a specific form of neuronal death induced by NMDAR overstimulation, dramatically decreases Kidins220/ARMS levels in cortical neurons and in a model of cerebral ischemia. Kidins220/ARMS downregulation is triggered by overactivation of NMDARs containing NR2B subunits and subsequent Ca(2+) influx, and involves a dual mechanism: rapid cleavage by the Ca(2+)-dependent protease calpain and calpain-independent silencing of Kidins220/Arms gene transcription. Additionally, Kidins220/ARMS knockdown decreases ERK activation and basal neuronal viability, and enhances neuronal death under excitotoxic conditions. Our results demonstrate Kidins220/ARMS participation in neuronal life and death pathways, and constitute the first report of its regulation under pathological conditions.


Asunto(s)
Isquemia Encefálica/fisiopatología , Regulación hacia Abajo , Proteínas de la Membrana/metabolismo , Neuronas/citología , Fosfoproteínas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Isquemia Encefálica/metabolismo , Muerte Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Proteínas de la Membrana/genética , Neuronas/metabolismo , Fosfoproteínas/genética , Unión Proteica , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética
20.
J Neurosci Methods ; 168(1): 104-12, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17983662

RESUMEN

Gene transfer methods for efficient co-expression of exogenous proteins in neurons are crucial tools towards the understanding of the molecular basis of the central nervous system. Lentiviruses are retroviral vectors that can transduce a wide variety of cells including differentiated neurons. In this work, we have generated lentiviral vectors containing dual promoters that allow efficient co-expression of exogenous proteins in neurons. We show that insertion of two copies of a human synapsin promoter/WPRE cassette in a single lentiviral vector directs robust co-expression of cDNAs in cultured neurons, while excluding expression in the surrounding glial cells. Furthermore, insertion of the tetracycline-inducible system (Tet-off) controlled by the synapsin promoter results in tightly regulated expression of EGFP when used as a transgene in cultured neurons. Transduction of primary neurons with this inducible system leads to a 100-fold increase in EGFP mRNA levels in the absence of doxycycline. In transduced cultures, EGFP transcription is inhibited within 24h upon addition of doxycycline. The viral systems we developed here provide neuron-specific and regulated expression mediated by single lentiviral vectors and will prove valuable tools for the study of neuronal function.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Vectores Genéticos/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Regiones Promotoras Genéticas/fisiología , Animales , Antibacterianos/farmacología , Células Cultivadas , Corteza Cerebral/citología , Doxiciclina/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Transferencia de Gen , Lentivirus/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/virología , ARN Mensajero/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA