Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Toxicology ; 505: 153814, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677583

RESUMEN

The field of chemical toxicity testing is undergoing a transition to overcome the limitations of in vivo experiments. This evolution involves implementing innovative non-animal approaches to improve predictability and provide a more precise understanding of toxicity mechanisms. Adverse outcome pathway (AOP) networks are pivotal in organizing existing mechanistic knowledge related to toxicological processes. However, these AOP networks are dynamic and require regular updates to incorporate the latest data. Regulatory challenges also persist due to concerns about the reliability of the information they offer. This study introduces a generic Weight-of-Evidence (WoE) scoring method, aligned with the tailored Bradford-Hill criteria, to quantitatively assess the confidence levels in key event relationships (KERs) within AOP networks. We use the previously published AOP network on chemical-induced liver steatosis, a prevalent form of human liver injury, as a case study. Initially, the existing AOP network is optimized with the latest scientific information extracted from PubMed using the free SysRev platform for artificial intelligence (AI)-based abstract inclusion and standardized data collection. The resulting optimized AOP network, constructed using Cytoscape, visually represents confidence levels through node size (key event, KE) and edge thickness (KERs). Additionally, a Shiny application is developed to facilitate user interaction with the dataset, promoting future updates. Our analysis of 173 research papers yielded 100 unique KEs and 221 KERs among which 72 KEs and 170 KERs, respectively, have not been previously documented in the prior AOP network or AOP-wiki. Notably, modifications in de novo lipogenesis, fatty acid uptake and mitochondrial beta-oxidation, leading to lipid accumulation and liver steatosis, garnered the highest KER confidence scores. In conclusion, our study delivers a generic methodology for developing and assessing AOP networks. The quantitative WoE scoring method facilitates in determining the level of support for KERs within the optimized AOP network, offering valuable insights into its utility in both scientific research and regulatory contexts. KERs supported by robust evidence represent promising candidates for inclusion in an in vitro test battery for reliably predicting chemical-induced liver steatosis within regulatory frameworks.


Asunto(s)
Rutas de Resultados Adversos , Hígado Graso , Humanos , Hígado Graso/inducido químicamente , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Pruebas de Toxicidad/métodos , Inteligencia Artificial
2.
Arch Toxicol ; 98(5): 1271-1295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480536

RESUMEN

Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.


Asunto(s)
Caenorhabditis elegans , Síndromes de Neurotoxicidad , Animales , Humanos , Pez Cebra , Pruebas de Toxicidad/métodos , Síndromes de Neurotoxicidad/etiología
4.
Liver Int ; 43(5): 975-988, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36719059

RESUMEN

BACKGROUND: It is unclear whether the patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 C-to-G single nucleotide polymorphism, resulting in the substitution of isoleucine to methionine at position 148 (I148M), impedes regression of hepatic steatosis when treating non-alcoholic fatty liver disease (NAFLD). OBJECTIVES: Investigate if carriage of the PNPLA3 148M allele affects the anti-steatotic efficacy of all possible anti-NAFLD interventions, identify gaps in current knowledge and provide guidance for individual treatment. METHODS: Research available in public databases was searched up to 13 November 2022. Studies were included if a treatment in NAFLD patients decreased hepatic steatosis in the pooled patient group or a PNPLA3 I148M polymorphism subgroup (II/IM/MM). The risk of bias was assessed using the Cochrane Risk-Of-Bias 2 Tool and the Newcastle-Ottawa Scale. RESULTS: Moderate evidence indicates that NAFLD patients homozygous for the PNPLA3 148M allele benefit less or not at all from omega-3 carboxylic acids to decrease liver fat, while the PNPLA3 148I allele shows moderate benefit. Low evidence suggests that interventions employing lifestyle changes are more effective to reduce liver fat in NAFLD patients homozygous for the PNPLA3 148M allele compared to patients with wild-type PNPLA3. CONCLUSIONS: NAFLD patients homozygous for the PNPLA3 148M allele might not benefit from omega-3 carboxylic acids to reduce hepatic steatosis in contrast to patients with wild-type PNPLA3. Instead, patients with two PNPLA3 148M alleles should be especially advised to adopt lifestyle changes. Genotyping for PNPLA3 I148M should be encouraged in therapeutic studies for NAFLD. REGISTRATION NUMBER (PROSPERO): CRD42022375028.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido Simple , Homocigoto , Ácidos Carboxílicos , Predisposición Genética a la Enfermedad
5.
Regul Toxicol Pharmacol ; 135: 105260, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067853

RESUMEN

Allergic contact dermatitis (ACD) often associated with the topical use of perfumed products, remains one of the most common chronic skin disorders in Western countries. Since labelling of scented menstrual hygiene products (MHPs) is not mandatory, women might be unknowingly exposed to allergens. Given that vaginal mucosae lack the vital barrier function of the skin, skin allergens can easily penetrate and become systemically available and hence women may experience adverse effects in the anogenital region. The aim of this study was therefore to investigate whether women using scented MHPs are at risk of sensitization and hence developing ACD. Hereto, a Quantitative Risk Assessment (QRA) is performed on four well-known skin sensitizing chemicals (α-isomethyl ionone, benzyl salicylate, hexyl cinnamaldehyde and heliotropine) that were previously found leaching from five different scented MHPs including tampons and sanitary pads. The amounts of heliotropine, leached by one of the investigated tampons, exceeded acceptable exposure levels determined with the QRA and could induce sensitization. In addition, although no sensitization is expected for the other three compounds, an allergenic reaction might be provoked in women who are already sensitized. Labelling of allergens on scented MHPs would therefore help consumers to prevent adverse effects linked to ACD.


Asunto(s)
Alérgenos , Dermatitis Alérgica por Contacto , Alérgenos/efectos adversos , Dermatitis Alérgica por Contacto/prevención & control , Femenino , Humanos , Higiene , Productos para la Higiene Menstrual/efectos adversos , Menstruación , Medición de Riesgo
6.
Cells ; 11(5)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269515

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. METHODS: Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. RESULTS: Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. CONCLUSION: Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy.


Asunto(s)
Cirugía Bariátrica , Enfermedad del Hígado Graso no Alcohólico , PPAR delta , Chalconas , Humanos , Hipoglucemiantes/uso terapéutico , Metabolismo de los Lípidos/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Propionatos , Transcriptoma/genética
7.
Biomedicines ; 10(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35052840

RESUMEN

Although most same-stage non-alcoholic fatty liver disease (NAFLD) patients exhibit similar histologic sequelae, the underlying mechanisms appear to be highly heterogeneous. Therefore, it was recently proposed to redefine NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in which other known causes of liver disease such as alcohol consumption or viral hepatitis do not need to be excluded. Revised nomenclature envisions speeding up and facilitating anti-MAFLD drug development by means of patient stratification whereby each subgroup would benefit from distinct pharmacological interventions. As human-based in vitro research fulfils an irrefutable step in drug development, action should be taken as well in this stadium of the translational path. Indeed, most established in vitro NAFLD models rely on short-term exposure to fatty acids and use lipid accumulation as a phenotypic benchmark. This general approach to a seemingly ambiguous disease such as NAFLD therefore no longer seems applicable. Human-based in vitro models that accurately reflect distinct disease subgroups of MAFLD should thus be adopted in early preclinical disease modeling and drug testing. In this review article, we outline considerations for setting up translational in vitro experiments in the MAFLD era and allude to potential strategies to implement MAFLD heterogeneity into an in vitro setting so as to better align early drug development with future clinical trial designs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA