Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201511

RESUMEN

It has been shown that vertical transmission of the SARS-CoV-2 strain is relatively rare, and there is still limited information on the specific impact of maternal SARS-CoV-2 infection on vertical transmission. The current study focuses on a transcriptomics analysis aimed at examining differences in gene expression between placentas from mother-newborn pairs affected by COVID-19 and those from unaffected controls. Additionally, it investigates the in situ expression of molecules involved in placental inflammation. The Papa Giovanni XXIII Hospital in Bergamo, Italy, has recorded three instances of intrauterine transmission of SARS-CoV-2. The first two cases occurred early in the pandemic and involved pregnant women in their third trimester who were diagnosed with SARS-CoV-2. The third case involved an asymptomatic woman in her second trimester with a twin pregnancy, who unfortunately delivered two stillborn fetuses due to the premature rupture of membranes. Transcriptomic analysis revealed significant differences in gene expression between the placentae of COVID-19-affected mother/newborn pairs and two matched controls. The infected and control placentae were matched for gestational age. According to the Benjamani-Hochberg method, 305 genes met the criterion of an adjusted p-value of less than 0.05, and 219 genes met the criterion of less than 0.01. Up-regulated genes involved in cell signaling (e.g., CCL20, C3, MARCO) and immune response (e.g., LILRA3, CXCL10, CD48, CD86, IL1RN, IL-18R1) suggest their potential role in the inflammatory response to SARS-CoV-2. RNAscope® technology, coupled with image analysis, was utilized to quantify the surface area covered by SARS-CoV-2, ACE2, IL-1ß, IL-6, IL-8, IL-10, and TNF-α on both the maternal and fetal sides of the placenta. A non-statistically significant gradient for SARS-CoV-2 was observed, with a higher surface coverage on the fetal side (2.42 ± 3.71%) compared to the maternal side (0.74 ± 1.19%) of the placenta. Although not statistically significant, the surface area covered by ACE2 mRNA was higher on the maternal side (0.02 ± 0.04%) compared to the fetal side (0.01 ± 0.01%) of the placenta. IL-6 and IL-8 were more prevalent on the fetal side (0.03 ± 0.04% and 0.06 ± 0.08%, respectively) compared to the maternal side (0.02 ± 0.01% and 0.02 ± 0.02%, respectively). The mean surface areas of IL-1ß and IL-10 were found to be equal on both the fetal (0.04 ± 0.04% and 0.01 ± 0.01%, respectively) and maternal sides of the placenta (0.04 ± 0.05% and 0.01 ± 0.01%, respectively). The mean surface area of TNF-α was found to be equal on both the fetal and maternal sides of the placenta (0.02 ± 0.02% and 0.02 ± 0.02%, respectively). On the maternal side, ACE-2 and all examined interleukins, but not TNF-α, exhibited an inverse mRNA amount compared to SARS-CoV-2. On the fetal side, ACE-2, IL-6 and IL-8 were inversely correlated with SARS-CoV-2 (r = -0.3, r = -0.1 and r = -0.4, respectively), while IL-1ß and IL-10 showed positive correlations (r = 0.9, p = 0.005 and r = 0.5, respectively). TNF-α exhibited a positive correlation with SARS-CoV-2 on both maternal (r = 0.4) and fetal sides (r = 0.9) of the placenta. Further research is needed to evaluate the correlation between cell signaling and immune response genes in the placenta and the vertical transmission of SARS-CoV-2. Nonetheless, the current study extends our comprehension of the molecular and immunological factors involved in SARS-CoV-2 placental infection underlying maternal-fetal transmission.


Asunto(s)
COVID-19 , Transmisión Vertical de Enfermedad Infecciosa , Placenta , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Adulto , Femenino , Humanos , Recién Nacido , Embarazo , COVID-19/inmunología , COVID-19/transmisión , COVID-19/virología , Citocinas/metabolismo , Citocinas/genética , Perfilación de la Expresión Génica , Inflamación/genética , Inflamación/inmunología , Inflamación/virología , Placenta/inmunología , Placenta/metabolismo , Placenta/virología , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/inmunología , Transcriptoma
2.
Eur Arch Psychiatry Clin Neurosci ; 273(2): 347-356, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36001138

RESUMEN

Healthcare workers experienced high degree of stress during COVID-19. Purpose of the present article is to compare mental health (depressive and Post-Traumatic-Stress-Disorders-PTSD-symptoms) and epigenetics aspects (degree of methylation of stress-related genes) in front-line healthcare professionals versus healthcare working in non-COVID-19 wards. Sixty-eight healthcare workers were included in the study: 39 were working in COVID-19 wards (cases) and 29 in non-COVID wards (controls). From all participants, demographic and clinical information were collected by an ad-hoc questionnaire. Depressive and PTSD symptoms were evaluated by the Patient Health Questionnaire-9 (PHQ-9) and the Impact of Event Scale-Revised (IES-R), respectively. Methylation analyses of 9 promoter/regulatory regions of genes known to be implicated in depression/PTSD (ADCYAP1, BDNF, CRHR1, DRD2, IGF2, LSD1/KDM1A, NR3C1, OXTR, SLC6A4) were performed on DNA from blood samples by the MassARRAY EpiTYPER platform, with MassCleave settings. Controls showed more frequent lifetime history of anxiety/depression with respect to cases (χ2 = 5.72, p = 0.03). On the contrary, cases versus controls presented higher PHQ-9 (t = 2.13, p = 0.04), PHQ-9 sleep item (t = 2.26, p = 0.03), IES-R total (t = 2.17, p = 0.03), IES-R intrusion (t = 2.46, p = 0.02), IES-R avoidance (t = 1.99, p = 0.05) mean total scores. Methylation levels at CRHR1, DRD2 and LSD1 genes was significantly higher in cases with respect to controls (p < 0.01, p = 0.03 and p = 0.03, respectively). Frontline health professionals experienced more negative effects on mental health during COVID-19 pandemic than non-frontline healthcare workers. Methylation levels were increased in genes regulating HPA axis (CRHR1) and dopamine neurotransmission (DRD2 and LSD1), thus supporting the involvement of these biological processes in depression/PTSD and indicating that methylation of these genes can be modulated by stress conditions, such as working as healthcare front-line during COVID-19 pandemic.


Asunto(s)
COVID-19 , Humanos , Salud Mental , Proyectos Piloto , Pandemias , SARS-CoV-2 , Metilación , Sistema Hipotálamo-Hipofisario , Ansiedad/psicología , Sistema Hipófiso-Suprarrenal , Personal de Salud/psicología , Depresión/etiología , Depresión/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Histona Demetilasas
3.
Front Mol Biosci ; 9: 894247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090031

RESUMEN

Background: Breast cancer with osteoclast-like stromal giant cells (OSGC) is an exceedingly rare morphological pattern of invasive breast carcinoma. The tumor immune microenvironment (TIME) of these tumors is populated by OSGC, which resemble osteoclasts and show a histiocytic-like immunophenotype. Their role in breast cancer is unknown. The osteoclast maturation in the bone is regulated by the expression of cytokines that are also present in the TIME of tumors and in breast cancer tumor-associated macrophages (TAMs). TAMs-mediated anti-tumor immune pathways are regulated by miRNAs akin to osteoclast homeostasis. Here, we sought to characterize the different cellular compartments of breast cancers with OSGC and investigate the similarities of OSGC with tumor and TIME in terms of morphology, protein, and miRNA expression, specifically emphasizing on monocytic signatures. Methods and Results: Six breast cancers with OSGC were included. Tumor-infiltrating lymphocytes (TILs) and TAMs were separately quantified. The different cellular populations (i.e., normal epithelium, cancer cells, and OSGC) were isolated from tissue sections by laser-assisted microdissection. After RNA purification, 752 miRNAs were analyzed using a TaqMan Advanced miRNA Low-Density Array for all samples. Differentially expressed miRNAs were identified by computing the fold change (log2Ratio) using the Kolmogorov-Smirnov test and p values were corrected for multiple comparisons using the false discovery rate (FDR) approach. As a similarity analysis among samples, we used the Pearson test. The association between pairs of variables was investigated using Fisher exact test. Classical and non-classical monocyte miRNA signatures were finally applied. All OSGC displayed CD68 expression, TILs (range, 45-85%) and high TAMs (range, 35-75%). Regarding the global miRNAs profile, OSGC was more similar to cancer cells than to non-neoplastic ones. Shared deregulation of miR-143-3p, miR-195-5p, miR-181a-5p, and miR-181b-5p was observed between OSGC and cancer cells. The monocyte-associated miR-29a-3p and miR-21-3p were dysregulated in OSGCs compared with non-neoplastic or breast cancer tissues. Conclusion: Breast cancers with OSGC have an activated TIME. Shared epigenetic events occur during the ontogenesis of breast cancer cells and OSGC but the innumophenotype and miRNA profiles of the different cellular compartmens suggest that OSGC likely belong to the spectrum of M2 TAMs.

4.
Sci Rep ; 12(1): 12789, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896637

RESUMEN

We retrospectively investigated in women treated with fulvestrant for HR+/HER2 negative advanced breast cancer clinical, pathological and molecular features associated with long-term benefit from treatment defined as being progression-free at 18 months. Specifically, we analyzed on formalin-fixed paraffin-embedded tumor samples ESR1 and PI3KCA mutations and miRNAs profiles. 59 patients were evaluable (median age of 67 years, range 32-92). 18-month PFS rate was 27%; the lack of visceral metastases significantly predicted the likelihood of being progression-free at 18 months, while PI3KCA mutations, found in 36% of patients, were not associated with 18-month PFS. As of miRNAs, miR-549a, miR-644a, miR-16-5p were negatively while let-7c-5p was positively associated with 18-month PFS. In addition, miR-520d-3p and miR-548g-3p values were significantly lower while miR-603, miR-181a-5p and miR-199a-miR-199b-3p values were significantly higher in patients achieving 18-month PFS. In silico analysis of targets modulated by these two latter groups of miRNAs show that in patients achieving 18-month PFS the Hippo and Wnt signaling pathways were predicted to be upregulated while endocrine resistance was potentially repressed by miR-603, miR-181a-5p and miR-199a-miR-199b-3p. Our results provide additional clues on the molecular mechanisms involved in fulvestrant activity and resistance. Underlying pathways should be further elucidated and confirmed in larger cohorts.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Estudios Retrospectivos
5.
Front Oncol ; 11: 637116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791220

RESUMEN

Lack of demonstrable mutations affecting JAK2, CALR, or MPL driver genes within the spectrum of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is currently referred to as a triple-negative genotype, which is found in about 10% of patients with essential thrombocythemia (ET) and 5-10% of those with primary myelofibrosis (PMF). Very few papers are presently available on triple-negative ET, which is basically described as an indolent disease, differently from triple-negative PMF, which is an aggressive myeloid neoplasm, with a significantly higher risk of leukemic evolution. The aim of the present study was to evaluate the bone marrow morphology and the clinical-laboratory parameters of triple-negative ET patients, as well as to determine their molecular profile using next-generation sequencing (NGS) to identify any potential clonal biomarkers. We evaluated a single-center series of 40 triple-negative ET patients, diagnosed according to the 2017 WHO classification criteria and regularly followed up at the Hematology Unit of our Institution, between January 1983 and January 2019. In all patients, NGS was performed using the Illumina Ampliseq Myeloid Panel; morphological and immunohistochemical features of the bone marrow trephine biopsies were also thoroughly reviewed. Nucleotide variants were detected in 35 out of 40 patients. In detail, 29 subjects harbored one or two variants and six cases showed three or more concomitant nucleotide changes. The most frequent sequence variants involved the TET2 gene (55.0%), followed by KIT (27.5%). Histologically, most of the cases displayed a classical ET morphology. Interestingly, prevalent megakaryocytes morphology was more frequently polymorphic with a mixture of giant megakaryocytes with hyperlobulated nuclei, normal and small sized maturing elements, and naked nuclei. Finally, in five cases a mild degree of reticulin fibrosis (MF-1) was evident together with an increase in the micro-vessel density. By means of NGS we were able to identify nucleotide variants in most cases, thus we suggest that a sizeable proportion of triple-negative ET patients do have a clonal disease. In analogy with driver genes-mutated MPNs, these observations may prevent issues arising concerning triple-negative ET treatment, especially when a cytoreductive therapy may be warranted.

6.
Genes (Basel) ; 11(7)2020 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605290

RESUMEN

Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients' clinical management, including risk assessment, diagnosis, prognostication, and treatment.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Medicina de Precisión/métodos , Animales , Biomarcadores de Tumor/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Fosfohidrolasa PTEN/metabolismo
7.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664698

RESUMEN

Background: The Anaplastic Lymphoma Kinase (ALK) gene is known to be affected by several genetic alterations, such as rearrangement, amplification and point mutation. The main goal of this study was to comprehensively analyze ALK amplification (ALK-A) and ALK gene copy number gain (ALK-CNG) in a large cohort of non-small-cell lung cancer (NSCLC) patients in order to evaluate the effects on mRNA and protein expression. Methods: ALK locus number status was evaluated in 578 NSCLC cases by fluorescence in situ hybridization (FISH). In addition, ALK immunohistochemistry and ALK mRNA in situ hybridization were performed. Results: Out of 578 cases, 17 cases showed ALK-A. In addition, 14 cases presented ALK-CNG and 72 cases presented chromosome 2 polyploidy. None of those carrying ALK-A and -CNG showed either ALK immunohistochemical expression or ALK mRNA expression through in situ hybridization. We observed a high frequency of extra copies of the ALK gene. Conclusions: Our findings demonstrated that ALK-A is not involved in mRNA production and consequently is not involved in protein production; these findings support the hypothesis that ALK-A might not play a role in the pathogenesis of NSCLC, underlining the absence of a specific clinical application.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Amplificación de Genes , Dosificación de Gen , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Anciano , Cromosomas Humanos Par 2/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación in Situ , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Poliploidía , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética
8.
Transplant Direct ; 6(5): e547, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32548241

RESUMEN

Primary graft dysfunction, infections, and acute rejection (AR) worsen lung transplantation (LTx) outcome and patient survival. Despite significant efforts, reliable biomarkers of acute lung allograft dysfunction are lacking. To address this issue, we profiled the bronchoalveolar lavage (BAL) miRNome in LTx patients. METHODS: BAL-microRNAs (miRNAs) from 16 patients were collected 7 days (T0), 15 days (T1), and 3 months (T2) after bilateral LTx and profiled on low-density array. Unsupervised and supervised analyses were used to identify miRNAs associated with clinical features, pneumonia, or AR. Prognostic markers were identified using the Cox model. Targeted signaling pathways were predicted in silico. A second series of 11 patients were used to validate AR-associated miRNAs. RESULTS: Variation in BAL-miRNAs was associated with acute lung allograft dysfunction. Increased levels of miR-23b-3p at T2 were detected in patients with pneumonia, whereas let-7f-5p, miR-146b-3p, miR-22-5p, miR-29c-5p, miR-362-5p, and miR-452-5p were upregulated at T2 in patients with AR. miR-148b-5p and miR-744-3p distinguished LTx patients with AR in both cohorts. Low miR-148b-5p and high miR-744-3p expression levels were significantly associated with a shorter time to AR either within the first year after LTx or during follow-up. Combination of the 2 miRNAs identified LTx patients with higher AR risk independently of clinical variables. CONCLUSIONS: Our data provide new insights into the roles of BAL-miRNAs in regulating the pulmonary environment after transplantation and suggest that these miRNAs could serve as biomarkers of early- or mid-stage events. If validated, these findings could pave the way to a personalized clinical approach in LTx patients.

9.
Clin Sci (Lond) ; 134(10): 1151-1166, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32420596

RESUMEN

A percentage of celiac disease (CD) patients develop refractory type-2 disease (RCD2), a condition associated with increased risk of enteropathy-associated T-cell-lymphoma (EATL) and without therapeutic option. Therefore, we profiled the miRNome in series of peripheral T-cell lymphomas (PTCLs), CD, RCD1 or 2 and in the murine interleukin-15 (IL15)-transgenic (TG) model of RCD. The transcriptome was analyzed in 18 intestinal T-cell lymphomas (ITLs). Bioinformatics pipelines provided significant microRNA (miRNA) lists and predicted targets that were confirmed in a second set of patients. Our data show that ITLs have a unique miRNA profile with respect to other PTCLs. The c-MYC regulated miR-17/92 cluster distinguishes monomorphic epitheliotropic ITL (MEITL) from EATL and prognosticates EATL outcome. These miRNAs are decreased in IL15-TG mice upon Janus kinase (JAK) inhibition. The random forest algorithm identified a signature of 38 classifier miRNAs, among which, the miR-200 and miR-192/215 families were progressively lost in RCD2 and ITL-CD, whereas miR-17/92 and C19MC miRNAs were up-regulated. Accordingly, SMAD3, MDM2, c-Myc and activated-STAT3 were increased in RCD2 and EATL tissues while JAK inhibition in IL15-TG mice restored their levels to baseline. Our data suggest that miRNAs circuit supports activation of STAT3 and c-Myc oncogenic signaling in RCD2, thus contributing to lymphomagenesis. This novel understanding might pave the way to personalized medicine approaches for RCD and EATL.


Asunto(s)
Carcinogénesis/genética , Enfermedad Celíaca/genética , Regulación Neoplásica de la Expresión Génica , Linfoma/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Algoritmos , Animales , Biomarcadores de Tumor/metabolismo , Femenino , Intestinos/patología , Linfoma/patología , Masculino , Ratones Transgénicos , MicroARNs/metabolismo , Modelos Biológicos , Pronóstico , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína smad3/metabolismo , Regulación hacia Arriba/genética
10.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098071

RESUMEN

Mismatch repair (MMR) analysis in breast cancer may help to inform immunotherapy decisions but it lacks breast-specific guidelines. Unlike in other neoplasms, MMR protein loss shows intra-tumor heterogeneity and it is not mirrored by microsatellite instability in the breast. Additional biomarkers can improve MMR clinical testing. Phosphatase and tensin homolog (PTEN) inactivation is an early oncogenic event that is associated with MMR deficiency (dMMR) in several tumors. Here, we sought to characterize the diagnostic utility of PTEN expression analysis for MMR status assessment in breast cancer. A total of 608 breast cancers were profiled for their MMR and PTEN status. Proteins expression and distribution were analyzed by immunohistochemistry (IHC) on tissue microarrays and confirmed on full sections; PTEN copy number alterations were detected using a real-time PCR assay. Overall, 78 (12.8%) cases were MMR-heterogeneous (hMMR), while all patterns of PTEN expression showed no intra-tumor heterogeneity. Wild-type PTEN expression was observed in 15 (18.5%) dMMR tumors (p < 0.0001). Survival analyses revealed significant correlations between MMR-proficient (pMMR), PTEN expression, and a better outcome. The positive predictive value of PTEN-retained status for pMMR ranged from 94.6% in estrogen receptor (ER)+/HER2- tumors to 100% in HER2-amplified and ER-/HER2- cases. We propose a novel diagnostic algorithm where PTEN expression analysis can be employed to identify pMMR breast cancers.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Mama , Reparación de la Incompatibilidad de ADN , Regulación Neoplásica de la Expresión Génica , Fosfohidrolasa PTEN/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Tasa de Supervivencia
11.
Dig Dis Sci ; 65(7): 1982-1991, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31781909

RESUMEN

BACKGROUND: The role of microRNAs (miRNAs) in celiac disease (CD) is unclear. AIMS: We evaluated inflammation-related miRNA-146a, miRNA-155, miRNA-21, and miRNA-125b expression in peripheral blood and intestinal mucosa of CD adults. METHODS: Thirty patients with CD were included: patients with active CD on a gluten-containing diet (CD-active, n = 10), patients on a gluten-free diet (for at least 1 year), and patients with negative blood antibodies (CD-inactivePE, n = 10). In addition, ten healthy volunteers formed the comparison/control group. MiRNA expression was measured in duodenal biopsies from patients (CD-inactiveMU, n = 10) after in vitro exposure to PT gliadin and 33-mer peptide. MiRNAs expression was measured in plasma and in peripheral blood mononuclear cells (PBMCs) and monocytes, before and after in vitro exposure to native gliadin (gliadinN). RESULTS: Expression levels of miRNA-146a, miRNA-155, and miRNA-21 in PBMCs, miRNA-155 in monocytes and miRNA-155, miRNA-21, and miRNA-125b in plasma were elevated in both groups of celiac patients. After in vitro exposure with gliadinN, miRNA-146a and miRNA-155 expression markedly increased in PBMCs and monocytes, while miRNA-155 and miRNA-21 increased in the CD-active group. MiRNAs expression in intestinal mucosa did not change. MiRNA-146a and miRNA-155 expression showed high sensitivity and specificity for the presence of CD, irrespective of the current dietary treatment. CONCLUSIONS: Selected inflammation-related miRNAs expression is elevated in the peripheral blood of celiac. This suggests their participation in the immune processes underlying the pathology. Their similar response in active and inactive CD suggests that they should be further evaluated, as potential diagnostic biomarkers for CD.


Asunto(s)
Enfermedad Celíaca/metabolismo , Mucosa Intestinal/metabolismo , MicroARNs/metabolismo , Adulto , Estudios de Casos y Controles , Enfermedad Celíaca/sangre , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Dieta Sin Gluten , Femenino , Proteínas de Unión al GTP/inmunología , Antígenos HLA-DQ/genética , Humanos , Inmunoglobulina A/inmunología , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/inmunología
12.
Cancer Res ; 79(24): 6215-6226, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31582380

RESUMEN

The regulators of mitochondrial cell death in cancer have remained elusive, hampering the development of new therapies. Here, we showed that protein isoforms of mitochondrial fission factor (MFF1 and MFF2), a molecule that controls mitochondrial size and shape, that is, mitochondrial dynamics, were overexpressed in patients with non-small cell lung cancer and formed homo- and heterodimeric complexes with the voltage-dependent anion channel-1 (VDAC1), a key regulator of mitochondrial outer membrane permeability. MFF inserted into the interior hole of the VDAC1 ring using Arg225, Arg236, and Gln241 as key contact sites. A cell-permeable MFF Ser223-Leu243 d-enantiomeric peptidomimetic disrupted the MFF-VDAC1 complex, acutely depolarized mitochondria, and triggered cell death in heterogeneous tumor types, including drug-resistant melanoma, but had no effect on normal cells. In preclinical models, treatment with the MFF peptidomimetic was well-tolerated and demonstrated anticancer activity in patient-derived xenografts, primary breast and lung adenocarcinoma 3D organoids, and glioblastoma neurospheres. These data identify the MFF-VDAC1 complex as a novel regulator of mitochondrial cell death and an actionable therapeutic target in cancer. SIGNIFICANCE: These findings describe mitochondrial fission regulation using a peptidomimetic agent that disturbs the MFF-VDAC complex and displays anticancer activity in multiple tumor models.See related commentary by Rao, p. 6074.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas de la Membrana/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/patología , Proteínas Mitocondriales/antagonistas & inhibidores , Permeabilidad/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/antagonistas & inhibidores , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
EBioMedicine ; 48: 353-363, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31542392

RESUMEN

BACKGROUND: Mitochondrial functions are exploited in cancer and provide a validated therapeutic target. However, how this process is regulated has remained mostly elusive and the identification of new pathways that control mitochondrial integrity in cancer is an urgent priority. METHODS: We studied clinically-annotated patient series of primary and metastatic prostate cancer, representative cases of multiple myeloma (MM) and publicly available genetic databases. Gene regulation studies involved chromatin immunoprecipitation, PCR amplification and Western blotting of conditional Myc-expressing cell lines. Transient or stable gene silencing was used to quantify mitochondrial functions in bioenergetics, outer membrane permeability, Ca2+ homeostasis, redox balance and cell death. Tumorigenicity was assessed by cell proliferation, colony formation and xenograft tumour growth. FINDINGS: We identified Mitochondrial Fission Factor (MFF) as a novel transcriptional target of oncogenic Myc overexpressed in primary and metastatic cancer, compared to normal tissues. Biochemically, MFF isoforms, MFF1 and MFF2 associate with the Voltage-Dependent Anion Channel-1 (VDAC1) at the mitochondrial outer membrane, in vivo. Disruption of this complex by MFF silencing induces general collapse of mitochondrial functions with increased outer membrane permeability, loss of inner membrane potential, Ca2+ unbalance, bioenergetics defects and activation of cell death pathways. In turn, this inhibits tumour cell proliferation, suppresses colony formation and reduces xenograft tumour growth in mice. INTERPRETATION: An MFF-VDAC1 complex is a novel regulator of mitochondrial integrity and actionable therapeutic target in cancer.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Proliferación Celular , Humanos , Potencial de la Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética , Permeabilidad
14.
Biomed Res Int ; 2019: 6832909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31111063

RESUMEN

An important harmonization effort was produced by the scientific community to standardize both the preanalytical and interpretative phases of programmed death-ligand 1 (PD-L1) immunohistochemical (IHC) testing in non-small-cell lung cancer (NSCLC). This analysis is crucial for the selection of patients with advanced-stage tumors eligible for treatment with pembrolizumab and potentially with other anti-PD-1/PD-L1 checkpoint inhibitors. This multicentric retrospective study evaluated the reproducibility of PD-L1 testing in the Italian scenario both for closed and open platforms. In the evaluation of the well-known gold-standard combinations (Agilent 22C3 PharmDx on Dako Autostainer versus Roche's Ventana SP263 on BenchMark), the results confirmed the literature data and showed complete overlapping between the two methods. With regard to the performances by using open platforms, the combination of 22C3 with Dako Omnis or Benchmark obtained good results basically, while the 28,8 clone seemed to be associated with worse scores.


Asunto(s)
Antígeno B7-H1/análisis , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Humanos , Inmunohistoquímica , Italia , Pulmón/patología , Macrófagos/patología , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos
15.
EBioMedicine ; 41: 225-235, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30737083

RESUMEN

BACKGROUND: The V-ATPase proton pump controls acidification of intra and extra-cellular milieu in both physiological and pathological conditions. We previously showed that some V-ATPase subunits are enriched in glioma stem cells and in patients with poor survival. In this study, we investigated how expression of a GBM-like V-ATPase pump influences the non-neoplastic brain microenvironment. METHODS: Large oncosome (LO) vesicles were isolated from primary glioblastoma (GBM) neurospheres, or from patient sera, and co-cultured with primary neoplastic or non-neoplastic brain cells. LO transcript and protein contents were analyzed by qPCR, immunoblotting and immunogold staining. Activation of pathways in recipient cells was determined at gene and protein expression levels. V-ATPase activity was impaired by Bafilomycin A1 or gene silencing. FINDINGS: GBM neurospheres influence their non-neoplastic microenvironment by delivering the V-ATPase subunit V1G1 and the homeobox genes HOXA7, HOXA10, and POU3F2 to recipient cells via LO. LOs reprogram recipient cells to proliferate, grow as spheres and to migrate. Moreover, LOs are particularly abundant in the circulation of GBM patients with short survival time. Finally, impairment of V-ATPase reduces LOs activity. INTERPRETATION: We identified a novel mechanism adopted by glioma stem cells to promote disease progression via LO-mediated reprogramming of their microenvironment. Our data provide preliminary evidence for future development of LO-based liquid biopsies and suggest a novel potential strategy to contrast glioma progression. FUND: This work was supported by Fondazione Cariplo (2014-1148 to VV) and by the Italian Minister of Health-Ricerca Corrente program 2017 (to SF).


Asunto(s)
Comunicación Autocrina , Neoplasias Encefálicas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Glioblastoma/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Células Cultivadas , Glioblastoma/patología , Proteínas Homeobox A10 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Factores del Dominio POU/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral , ATPasas de Translocación de Protón Vacuolares/genética
16.
EBioMedicine ; 41: 214-224, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30737087

RESUMEN

BACKGROUND: Cancer cells use specific V-ATPase subunits to activate oncogenic pathways. Therefore, we investigated V-ATPase deregulation in aggressive gliomas and associated signaling. METHODS: V-ATPase genes expression and associated pathways were analyzed in different series of glioma available from public databases, as well as in patients' cohort. Activation of pathways was analyzed at gene and protein expression levels. A genetic model of glioma in Drosophila melanogaster and mice with GBM patients-derived orthotopic xenografts were used as in vivo models of disease. FINDINGS: GBM and recurrent gliomas display a specific V-ATPase signature. Such signature resolves the heterogeneous class of IDH-wild type lower-grade gliomas, identifying the patients with worse prognosis independently from clinical and molecular features (p = 0·03, by Cox proportional-hazards model). In vivo, V-ATPase subunits deregulation significantly impacts tumor growth and proliferation. At the molecular level, GBM-like V-ATPase expression correlates with upregulation of Homeobox genes. INTERPRETATION: Our data identify a V-ATPase signature that accompanies glioma aggressiveness and suggest new entry points for glioma stratification and follow-up. FUND: This work was supported by Fondazione Cariplo (2014-1148 to VV), Fondazione IRCCS Ca' Granda, and Fondazione INGM Grant in Molecular Medicine 2014 (to VV).


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Células Cultivadas , Drosophila melanogaster , Femenino , Glioma/clasificación , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , ATPasas de Translocación de Protón Vacuolares/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Dig Liver Dis ; 51(1): 47-54, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30055963

RESUMEN

BACKGROUND: Gliadins are involved in gluten-related disorders and are responsible for the alteration of the cellular redox balance. It is not clear if the gliadin-related oxidative stress can induce DNA damage in enterocytes. AIM: To investigate any possible genotoxicity caused by gliadin and to assess its relationship with oxidative stress in vitro and ex vivo. METHODS: Caco-2 cells were exposed for 6-12-24 h to increasing concentrations (250 µg/mL-1000 µg/mL) of digested gliadin. We investigated: cytotoxicity, oxidative balance (reactive oxygen species, ROS), DNA damage (comet assay and γ-H2AX detection), transglutaminase type 2 (TG2) activity and annexin V expression. H2AX and 8-OHG immunohistochemistry has been evaluated on duodenal biopsies of celiac subjects and controls. RESULTS: Gliadin induced a significant increase (+50%) of ROS after 12 h of exposition starting with a 500 µg/mL dose of gliadin. Comet assay and γ-H2AX demonstrated DNA damage, evident at the gliadin concentration of 500 µg/mL after 24 h. TG2 activity increased in chromatin and cytoskeleton cellular compartments at different gliadin doses (250/500/1000 µg/mL). The γ-H2AX and 8-OHG immunohistochemistry was altered in the duodenal biopsies of celiac patients. CONCLUSIONS: Gliadin induces cellular oxidative stress, DNA damage and pro-apoptotic stimulation in Caco-2 cells and in the duodenal mucosa of celiac patients.


Asunto(s)
Enfermedad Celíaca/metabolismo , Fragmentación del ADN/efectos de los fármacos , Gliadina/farmacología , Estrés Oxidativo/efectos de los fármacos , Apoptosis , Western Blotting , Células CACO-2/efectos de los fármacos , Ensayo Cometa , Enterocitos/efectos de los fármacos , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Masculino , Persona de Mediana Edad
18.
Nat Commun ; 9(1): 3921, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237396

RESUMEN

The original version of this Article contained an error in the spelling of the author Miriam Gaggianesi, which was incorrectly given as Miriam Giaggianesi. Furthermore, the affiliation details for Gabriella Gaudioso, Valentina Vaira, and Silvano Bosari incorrectly omitted 'Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy'. Finally, the affiliation details for Alice Turdo, Miriam Gaggianesi, Aurora Chinnici and Elisa Lipari were incorrectly given as 'Dipartimento di Biotecnologie Mediche e Medicina Legale Sezione di Biochimica Medica, Facoltà di Medicina e Chirurgia, Policlinico "P.Giaccone", Università di Palermo, Palermo, 90127, Italy'. The correct affiliation is 'Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, 90127, Italy'. These errors have now been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 9(1): 1024, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523784

RESUMEN

Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermore, we demonstrate that the MYC-driven epigenetic reprogramming favors the formation and maintenance of tumor-initiating cells endowed with metastatic capacity. This study supports the notion that MYC-driven tumor initiation relies on cell reprogramming, which is mediated by the activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers.


Asunto(s)
Neoplasias de la Mama/metabolismo , Epigénesis Genética , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Carcinogénesis , Línea Celular Tumoral , Reprogramación Celular , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones SCID , Células Madre Neoplásicas/citología
20.
JNCI Cancer Spectr ; 2(4): pky056, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31360876

RESUMEN

BACKGROUND: Breast cancers that harbor mismatch-repair (MMR) deficiency and/or microsatellite instability (MSI) might be sensitive to immune checkpoint blockade, but there are currently no specific guidelines for assessing MMR status in breast cancer. Here, we sought to define the clinical value of MMR immunohistochemistry (IHC) and MSI analysis in breast cancers. METHODS: We subjected 444 breast cancers to MMR IHC and MSI analysis. Cases were classified as MMR-proficient (pMMR), MMR-deficient (dMMR), and MMR-heterogeneous (hMMR) based on the loss of immunoreactivity; MSI was defined by instability in the five indicators recommended by the National Cancer Institute for endometrial and colorectal cancers. Correlation of MMR status with patients' survival was assessed using the Kaplan-Meier estimator. Statistical tests were two-sided. RESULTS: Loss of MMR proteins was homogeneous (dMMR) in 75 patients (17%) and heterogeneous (hMMR) in 55 (12%). Among luminal breast cancers, there were similar frequencies of dMMR and hMMR tumors. Overall, the rate of discrepancy between IHC and MSI analysis was high (91%). Women with Luminal B-like dMMR carcinomas (n = 44) showed shorter overall survival (median = 77 months, range = 0-115 months) than those with pMMR (n = 205) or hMMR (n = 35) tumors (median = 84 months, range = 0-127 months) (P = .008). On the contrary, patients with estrogen receptor-negative breast cancers treated with chemotherapy lived longer in cases of dMMR (n = 9) than pMMR (n = 33) or hMMR (n = 7) tumors, with 87 months of median survival (range = 73-123 months) for the former compared with 79 months (range = 8-113 months) for the latter two categories (P < .001). CONCLUSIONS: Immunohistochemistry and MSI are not interchangeable tests in breast carcinomas. MMR protein loss is a more common event than MSI and shows intra-tumor heterogeneity. MMR IHC allows the identification of clinically relevant subclasses of breast cancer patients, provided that multiple areas of the tumor are analyzed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA