RESUMEN
Introduction: The CASPIAN and IMpower133 trials revealed a significant survival benefit of chemotherapy plus immunotherapy in patients with extensive-stage SCLC. The current study characterizes the proportion of real-world patients who would have met eligibility for these trials and highlights factors influencing eligibility in the real-world setting. Methods: A retrospective analysis of patient data was conducted for stage IV patients with SCLC treated at the Cancer Centre of Southeastern Ontario, Canada. Trial eligibility was based on criteria used in the IMpower133 and CASPIAN trials. Data were summarized using descriptive statistics. Overall survival was assessed using the Kaplan-Meier method. Results: Of the 116 patients included, only 12.1% met the overall eligibility criteria for the IMpower133 trial, and 14.7% for the CASPIAN trial. The most common reasons for ineligibility included: Eastern Cooperative Oncology Group (ECOG) 2 or greater (77.5%), inadequate organ function (48%), and the presence of brain metastases at diagnosis (37.3%). Sixty-one patients (59.8%) met two or more major ineligibility criteria. If trial eligibility was expanded to include ECOG 2 patients, an additional 10.3% would have met eligibility. The median overall survival for all-comers was 6.5 months. Conclusions: Only a small minority of real-world patients with extensive-stage SCLC would have met eligibility for the IMpower133 and CASPIAN trials, with ECOG greater than or equal to 2, inadequate organ function, and brain metastases comprising the most common reasons for trial ineligibility. Future clinical trials should expand the inclusion criteria to better represent real-world patient populations.
RESUMEN
Circulating tumor DNA (ctDNA) has shown promise in capturing primary resistance to immunotherapy. BR.36 is a multi-center, randomized, ctDNA-directed, phase 2 trial of molecular response-adaptive immuno-chemotherapy for patients with lung cancer. In the first of two independent stages, 50 patients with advanced non-small cell lung cancer received pembrolizumab as standard of care. The primary objectives of stage 1 were to ascertain ctDNA response and determine optimal timing and concordance with radiologic Response Evaluation Criteria in Solid Tumors (RECIST) response. Secondary endpoints included the evaluation of time to ctDNA response and correlation with progression-free and overall survival. Maximal mutant allele fraction clearance at the third cycle of pembrolizumab signified molecular response (mR). The trial met its primary endpoint, with a sensitivity of ctDNA response for RECIST response of 82% (90% confidence interval (CI): 52-97%) and a specificity of 75% (90% CI: 56.5-88.5%). Median time to ctDNA response was 2.1 months (90% CI: 1.5-2.6), and patients with mR attained longer progression-free survival (5.03 months versus 2.6 months) and overall survival (not reached versus 7.23 months). These findings are incorporated into the ctDNA-driven interventional molecular response-adaptive second stage of the BR.36 trial in which patients at risk of progression are randomized to treatment intensification or continuation of therapy. ClinicalTrials.gov ID: NCT04093167 .
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Anticuerpos Monoclonales Humanizados , Supervivencia sin ProgresiónRESUMEN
Background: There are limited clinical data comparing extended dosing (ED) versus standard dosing (SD) of pembrolizumab for metastatic non-small-cell lung cancer. Methods: This retrospective study included patients with metastatic non-small-cell lung cancer and PD-L1 tumor proportion score ≥50% treated with one or more cycles of single-agent pembrolizumab with SD or ED from January 2018 to December 2020. Results: A higher proportion of patients were alive in the ED group (vs SD) at 6 months (94 vs 51%), 12 months (94 vs 33%) and data cutoff (94 vs 26%) (p < 0.001 for all). The rate (44 vs 32%; p = 0.407) and severity of grade ≥3 immune-related adverse events were similar (50 vs 52%); however, ED patients more frequently discontinued treatment due to toxicity (45 vs 15%; p < 0.001). Conclusion: A greater proportion of ED patients were alive at data cutoff, and the rate and severity of immune-related adverse events were similar between groups.
Cancer in the lungs can be treated with drugs that use your immune system to kill cancer. This study showed that patients lived longer when the drugs were given further apart, and that the extended treatment was equally safe as the standard dosing schedule.
Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pandemias , Estudios Retrospectivos , Antígeno B7-H1 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéuticoRESUMEN
It is believed that fetal hemoglobin (HbF) expression in adults is largely genetically regulated. The increased expression of HbF in pregnancy has been reported in a small number of articles. Different mechanisms have been proposed, but the description of HbF expression during pregnancy remains unclear. The objectives of this study were to document HbF expression during peri and postpartum periods, confirm its maternal origin, and assess clinical and biochemical parameters potentially associated with HbF modulation. In this observational prospective study, 345 pregnant women were followed. At baseline, 169 had HbF expression (≥1% of total hemoglobin) and 176 did not have HbF expression. Women were followed at the obstetric clinic during their pregnancy. Clinical and biochemical parameters were measured at each visit. Analyses were made to determine which parameters had a significant correlation to HbF expression. Results show that HbF expression of ≥1% during peri and postpartum periods in pregnant women without influencing comorbidities is at its highest peak during the first trimester. In all women, it was proven that HbF was of maternal origin. A significant positive correlation between HbF expression, ßeta-human chorionic gonadotropin (ß-HCG), and glycosylated hemoglobin (HbA1c) was present. A significant negative association between HbF expression and total hemoglobin was found. HbF expression induction during pregnancy is probably associated with an increase in ß-HCG and HbA1C, and a decrease in total hemoglobin, which could temporarily reactivate the fetal erythropoietic system.
RESUMEN
Immune checkpoint inhibitors have activity in mesothelioma. IND.227 was a phase 2 trial (120 patients planned) comparing progression-free survival of standard platinum and pemetrexed (CP) versus CP + pembrolizumab (pembro) versus pembro. Accrual to the pembro arm was discontinued on the basis of interim analysis (IA-16 wk disease control rate). CP + pembro was tolerable, with progression-free survival similar between arms and median survival and overall response rate higher than those of CP alone (19.8 mo [95% confidence interval or CI: 8.4-41.36] versus 8.9 mo [95% CI: 5.3-12.8] and 47% [95% CI: 24%-71%] versus 19% [95% CI: 5%-42%], respectively). The subsequent phase 3 trial has completed accrual; results are expected in 2023.
Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Neoplasias Pulmonares/patología , Canadá , Mesotelioma/patología , Pemetrexed/farmacología , Pemetrexed/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Pleurales/patologíaRESUMEN
BACKGROUND: Durvalumab following chemoradiation in unresectable stage III non-small cell lung cancer (NSCLC) has led to improved outcomes. The schedule of administration has been determined by pharmacokinetic studies. This study evaluates real-world efficacy and safety outcomes of extended dosing (ED) vs. standard dosing (SD) of durvalumab. METHODS: Stage III NSCLC patients treated at the Cancer center of Southeastern Ontario with consolidative durvalumab from March 2017-December 2020 were included. Patient characteristics and outcomes were evaluated through retrospective review. Comparisons were made using chi-square and t-tests. Kaplan-Meier curves were used to analyze overall survival (OS). RESULTS: A total of 35 patients were included; 15 (43%) switched to ED. Distant recurrence rates were higher in the ED group (53% vs. 20%, p = 0.07), with no differences in the sites of disease recurrence. A similar proportion of patients were alive in the ED vs. SD group (93% vs. 80%, p = 0.3), with no significant difference in OS. There were less grade 3 or greater immune-related adverse events in the ED group (0% vs. 20%). Treatment discontinuation occurred in 47% vs. 50% in the ED vs. SD groups, respectively, owing to toxicity in 20% of patients in the ED group vs. 40% in the SD group. CONCLUSIONS: Extended dosing has similar efficacy and toxicity to standard dosing; however, there was a higher rate of toxicity necessitating discontinuation in the SD group, which may have impacted the clinical decision-making to switch to ED. Our data is limited by a small sample size and should be further validated in larger cohorts.
Asunto(s)
Antineoplásicos Inmunológicos , COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Pandemias , Antineoplásicos Inmunológicos/efectos adversos , Estadificación de Neoplasias , Recurrencia Local de Neoplasia/tratamiento farmacológicoRESUMEN
CCN4 (also known as WNT1-Inducible Signaling Pathway Protein 1 or WISP1) is a 367 amino acid, 40 kDa protein located on chromosome 8q24.1-8q24.3. Prior studies have provided support for a pro-inflammatory role for CCN4. We have shown recently that CCN4 expression is associated with advanced disease, epithelial-mesenchymal transition, and an inflamed tumor microenvironment in multiple solid tumors. We detail here the CCN4 tissue microarray immunofluorescence protocol related to these findings.
Asunto(s)
Proteínas CCN de Señalización Intercelular , Neoplasias , Humanos , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Microambiente Tumoral , Transición Epitelial-Mesenquimal , Técnica del Anticuerpo FluorescenteRESUMEN
With the advent of immunotherapy as one of the keystones of the treatment of our patients with cancer, a number of atypical patterns of response to these agents has been identified. These include pseudoprogression, where the tumor initially shows objective growth before decreasing in size, and hyperprogression, hypothesized to be a drug-induced acceleration of the tumor burden. Despite it being >10 years since the first immune-oncology drug was approved, neither the biology behind these paradoxical responses has been well understood, nor their incidence, identification criteria, predictive biomarkers, or clinical impact have been fully described. Immune-based Response Evaluation Criteria in Solid Tumors (iRECIST) guidelines have been published as a revision to the RECIST V.1.1 criteria for use in trials of immunotherapeutics, and the iRECIST subcommittee (of the RECIST Working Group) is working on elucidating these aspects, with data sharing a current major challenge to move forward with this unmet need in immuno-oncology.
Asunto(s)
Inmunoterapia , Neoplasias , Progresión de la Enfermedad , Humanos , Neoplasias/terapia , Criterios de Evaluación de Respuesta en Tumores Sólidos , Carga TumoralRESUMEN
Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to antiprogrammed cell death 1 (antiPD-1)based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γpositive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.
Asunto(s)
Fibras de la Dieta , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/terapia , Probióticos , Animales , Estudios de Cohortes , Ácidos Grasos Volátiles/análisis , Trasplante de Microbiota Fecal , Heces/química , Heces/microbiología , Femenino , Humanos , Inmunoterapia , Masculino , Melanoma/inmunología , Melanoma/microbiología , Melanoma Experimental/inmunología , Melanoma Experimental/microbiología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Supervivencia sin Progresión , Linfocitos TRESUMEN
Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.
Asunto(s)
Melanoma , Preparaciones Farmacéuticas , Animales , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/genética , Células T de Memoria , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Proto-Oncogénicas B-raf/genéticaRESUMEN
Treatment with combined immune checkpoint blockade (CICB) targeting CTLA-4 and PD-1 is associated with clinical benefit across tumor types, but also a high rate of immune-related adverse events. Insights into biomarkers and mechanisms of response and toxicity to CICB are needed. To address this, we profiled the blood, tumor and gut microbiome of 77 patients with advanced melanoma treated with CICB, with a high rate of any ≥grade 3 immune-related adverse events (49%) with parallel studies in pre-clinical models. Tumor-associated immune and genomic biomarkers of response to CICB were similar to those identified for ICB monotherapy, and toxicity from CICB was associated with a more diverse peripheral T-cell repertoire. Profiling of gut microbiota demonstrated a significantly higher abundance of Bacteroides intestinalis in patients with toxicity, with upregulation of mucosal IL-1ß in patient samples of colitis and in pre-clinical models. Together, these data offer potential new therapeutic angles for targeting toxicity to CICB.
Asunto(s)
Antígeno CTLA-4/inmunología , Microbioma Gastrointestinal , Receptor de Muerte Celular Programada 1/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Interleucina-1beta/inmunología , Melanoma , Ratones , Ratones Endogámicos C57BLAsunto(s)
Albúminas/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel/uso terapéutico , Anciano , Albúminas/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Paclitaxel/farmacologíaRESUMEN
Understanding resistance mechanisms to targeted therapies and immune checkpoint blockade in mutant KRAS lung cancers is critical to developing novel combination therapies and improving patient survival. Here, we show that MEK inhibition enhanced PD-L1 expression while PD-L1 blockade upregulated MAPK signaling in mutant KRAS lung tumors. Combined MEK inhibition with anti-PD-L1 synergistically reduced lung tumor growth and metastasis, but tumors eventually developed resistance to sustained combinatorial therapy. Multi-platform profiling revealed that resistant lung tumors have increased infiltration of Th17 cells, which secrete IL-17 and IL-22 cytokines to promote lung cancer cell invasiveness and MEK inhibitor resistance. Antibody depletion of IL-17A in combination with MEK inhibition and PD-L1 blockade markedly reduced therapy-resistance in vivo. Clinically, increased expression of Th17-associated genes in patients treated with PD-1 blockade predicted poorer overall survival and response in melanoma and predicated poorer response to anti-PD1 in NSCLC patients. Here we show a triple combinatorial therapeutic strategy to overcome resistance to combined MEK inhibitor and PD-L1 blockade.
Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Th17/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/inmunología , Sinergismo Farmacológico , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunohistoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Invasividad Neoplásica/genética , Invasividad Neoplásica/inmunología , Metástasis de la Neoplasia , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Th17/inmunología , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
INTRODUCTION: The combination of programmed cell death protein-1 or programmed death-ligand 1 immune checkpoint blockade and chemotherapy has revolutionized the treatment of advanced NSCLC, but the mechanisms underlying this synergy remain incompletely understood. In this study, we explored the relationships between neoadjuvant chemotherapy and the immune microenvironment (IME) of resectable NSCLC to identify novel mechanisms by which chemotherapy may enhance the effect of immune checkpoint blockade. METHODS: Genomic, transcriptomic, and immune profiling data of 511 patients treated with neoadjuvant chemotherapy followed by surgery (NCT) versus upfront surgery (US) were compared with determined differential characteristics of the IMEs derived from whole-exome sequencing (NCT = 18; US = 73), RNA microarray (NCT = 45; US = 202), flow cytometry (NCT = 17; US = 39), multiplex immunofluorescence (NCT = 10; US = 72), T-cell receptor sequencing (NCT = 16 and US = 63), and circulating cytokines (NCT = 18; US = 73). RESULTS: NCT was associated with increased infiltration of cytotoxic CD8+ T cells and CD20+ B cells. Moreover, NCT was associated with increases in CD8+CD103+ and CD4+CD103+PD-1+TIM3- tissue resident memory T cells. Gene expression profiling supported memory function of CD8+ and CD4+ T cells. However, NCT did not affect T-cell receptor clonality, richness, or tumor mutational burden. Finally, NCT was associated with decreased plasma BDNF (TrkB) at baseline and week 4 after surgery. CONCLUSIONS: Our study supports that, in the context of resectable NSCLC, neoadjuvant chemotherapy promotes antitumor immunity through T and B cell recruitment in the IME and through a phenotypic change toward cytotoxic and memory CD8+ and CD4+ memory helper T cells.
Asunto(s)
Neoplasias Pulmonares , Terapia Neoadyuvante , Linfocitos B , Linfocitos T CD8-positivos , Humanos , Memoria Inmunológica , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente TumoralRESUMEN
Current strategies to improve clinical outcomes in v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog-mutant non-small-cell lung cancer (NSCLC) patients include mitogen-activated protein kinase kinase 1 inhibitor and programmed death (PD) 1 (PD-1)/PD ligand 1 (PD-L1) immune checkpoint blockade combinations. Experience from treatment of melanoma suggests that anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-PD-1/PD-L1 combinations improve outcomes, but similar benefits remain to be seen for treatment of NSCLC. This report describes a single center, investigator-initiated phase I/II clinical trial to compare 2 combination schedules of intermittent or continuous selumetinib (AZD6244, ARRY-142886), tremelimumab (anti-CTLA-4), and durvalumab (anti-PD-L1) treatment with historical controls in patients with previously treated, unresectable NSCLC. Forty patients will be accrued at the University of Texas M.D. Anderson Cancer Center. Primary objectives include maximum tolerated dose (dose escalation phase) and progression-free survival (dose expansion phase). Secondary objectives include response rate according to Response Evaluation Criteria In Solid Tumors version 1.1, disease control rate, overall survival, safety, and duration of response. Exploratory objectives are to assess biomarkers of response and resistance on the basis of biopsies and peripheral blood taken before and after treatment using immune profiling, transcriptome, and protein readouts.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inmunoterapia/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Bencimidazoles/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Proyectos de Investigación , Tasa de Supervivencia , Adulto JovenRESUMEN
Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers1-10 and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity11-15, although these have been less well-studied in ICB treatment16. A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling17 that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter18) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets.
Asunto(s)
Linfocitos B/inmunología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/inmunología , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Estructuras Linfoides Terciarias/inmunología , Linfocitos B/citología , Linfocitos B/metabolismo , Biomarcadores de Tumor/análisis , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/cirugía , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/inmunología , Células Clonales/citología , Células Clonales/inmunología , Células Clonales/metabolismo , Células Dendríticas Foliculares/citología , Células Dendríticas Foliculares/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Memoria Inmunológica/inmunología , Espectrometría de Masas , Melanoma/patología , Melanoma/cirugía , Metástasis de la Neoplasia/genética , Fenotipo , Pronóstico , RNA-Seq , Receptores Inmunológicos/inmunología , Análisis de la Célula Individual , Linfocitos T/citología , Linfocitos T/inmunología , TranscriptomaRESUMEN
PD-1 blockade represents a major therapeutic avenue in anticancer immunotherapy. Delineating mechanisms of secondary resistance to this strategy is increasingly important. Here, we identified the deleterious role of signaling via the type I interferon (IFN) receptor in tumor and antigen presenting cells, that induced the expression of nitric oxide synthase 2 (NOS2), associated with intratumor accumulation of regulatory T cells (Treg) and myeloid cells and acquired resistance to anti-PD-1 monoclonal antibody (mAb). Sustained IFNß transcription was observed in resistant tumors, in turn inducing PD-L1 and NOS2 expression in both tumor and dendritic cells (DC). Whereas PD-L1 was not involved in secondary resistance to anti-PD-1 mAb, pharmacological or genetic inhibition of NOS2 maintained long-term control of tumors by PD-1 blockade, through reduction of Treg and DC activation. Resistance to immunotherapies, including anti-PD-1 mAb in melanoma patients, was also correlated with the induction of a type I IFN signature. Hence, the role of type I IFN in response to PD-1 blockade should be revisited as sustained type I IFN signaling may contribute to resistance to therapy.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Interferón Tipo I/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Células Dendríticas/citología , Células Dendríticas/metabolismo , Resistencia a Antineoplásicos , Humanos , Estimación de Kaplan-Meier , Melanoma/tratamiento farmacológico , Melanoma/mortalidad , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
Background: WNT1-Inducible Signaling Pathway Protein 1 (WISP1) is implicated in prostate cancer growth and metastasis and the regulation of inflammation in diverse benign diseases. The objectives of this study were to assess the prognostic value of WISP1, its association to inflammation and its relevance as a biomarker for immune checkpoint blockade (ICB) response. Methods: Publicly available RNA-seq datasets were used to evaluate the prognostic value of WISP1 gene expression and its association with tumor-infiltrating lymphocytes, inflamed tumor microenvironment, and anti-PD-1 ICB response. A tissue microarray (TMA) including 285 radical prostatectomy specimens was used to confirm these associations in prostate cancer. The effect of recombinant WISP1 (rWISP1) on inflammatory cytokines was assessed in vitro. Results: High levels of WISP1 correlated with BCR-free survival in prostate adenocarcinoma and overall survival in primary melanoma, low-grade glioma, and kidney papillary cell carcinoma. Some effects could be accounted for by higher WISP1 expression in advanced disease. High WISP1 expression in prostate adenocarcinoma was correlated with CD8+ cells density. In vitro, rWISP1 increased inflammatory cytokine production. High WISP1 gene expression in RNA-seq datasets was correlated with gene signatures of multiple immune cell types as well as an inflammatory cytokine, immune checkpoint, and epithelial-mesenchymal transition (EMT) gene expression. WISP1 mRNA expression was associated with primary resistance to ICB in datasets showing EMT. Conclusions: Our results support an association between WISP1 expression and advanced disease, EMT and an inflamed tumor microenvironment in multiple solid tumors. The consequences of WISP1 expression on cancer immunotherapy remains to be addressed.
RESUMEN
The human microbiome is a complex aggregate of microorganisms, and their genomes exert a number of influences crucial to the metabolic, immunologic, hormonal, and homeostatic function of the host. Recent work, both in preclinical mouse models and human studies, has shed light on the impact of gut and tumor microbiota on responses to systemic anticancer therapeutics. In light of this, strategies to target the microbiome to improve therapeutic responses are underway, including efforts to target gut and intratumoral microbes. Here, we discuss mechanisms by which microbiota may impact systemic and antitumor immunity, in addition to outstanding questions in the field. A deeper understanding of these is critical as we devise putative strategies to target the microbiome.