Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Microsc Microanal ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39027925

RESUMEN

Carbon fibers can play dual roles, carrying mechanical load and hosting lithium (Li) simultaneously in multifunctional devices called structural batteries. It is essential to gain a detailed understanding on the interaction between Li and carbon fibers on the nanoscale. Atom probe tomography (APT) can potentially reveal individual Li and C atoms. However, lithiated carbon fibers experience massive Li migration once exposed to the electric field in the APT instrument. We show that a few nanometers of a chromium (Cr) coating on APT specimens can shield the electric field and suppress the massive Li migration. The related effects of the Cr coating, such as introduction of oxygen, enhanced mass resolving power of the mass spectrum, and increased portion of single hits, are also discussed.

2.
Microsc Microanal ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39027931

RESUMEN

The application of atom probe tomography (APT) to frozen liquids is limited by difficulties in specimen preparation. Here, we report on the use of nanoporous Cu needles as a physical framework to hold water ice for investigation using APT. Nanoporous Cu needles are prepared by electropolishing and dealloying Cu-Mn matchstick precursors. Cryogenic scanning electron microscopy and focused ion beam milling reveal a hierarchical, dendritic, highly wettable microstructure. The atom probe mass spectrum is dominated by peaks of Cu+ and H(H2O)n+ up to n ≤ 3, and the reconstructed volume shows the protrusion of a Cu ligament into an ice-filled pore. The continuous Cu ligament network electrically connects the apex to the cryostage, leading to an enhanced electric field at the apex and increased cooling, both of which simplify the mass spectrum compared to previous reports.

3.
PLoS One ; 19(6): e0306374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935771

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0281703.].

4.
Microsc Microanal ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833315

RESUMEN

Cryogenic atom probe tomography (cryo-APT) is being developed to enable nanoscale compositional analyses of frozen liquids. Yet, the availability of readily available substrates that allow for the fixation of liquids while providing sufficient strength to their interface is still an issue. Here, we propose the use of 1-2-µm-thick binary alloy film of gold-silver sputtered onto flat silicon, with sufficient adhesion without an additional layer. Through chemical dealloying, we successfully fabricate a nanoporous substrate, with an open-pore structure, which is mounted on a microarray of Si posts by lift-out in the focused-ion beam system, allowing for cryogenic fixation of liquids. We present cryo-APT results obtained after cryogenic sharpening, vacuum cryo-transfer, and analysis of pure water on the top and inside the nanoporous film. We demonstrate that this new substrate has the requisite characteristics for facilitating cryo-APT of frozen liquids, with a relatively lower volume of precious metals. This complete workflow represents an improved approach for frozen liquid analysis, from preparation of the films to the successful fixation of the liquid in the porous network, to cryo-APT.

5.
Adv Mater ; : e2401735, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813786

RESUMEN

The early stages of corrosion occurring at liquid-solid interfaces control the evolution of the material's degradation process, yet due to their transient state, their analysis remains a formidable challenge. Here corrosion tests are performed on a MgCa alloy, a candidate material for biodegradable implants using pure water as a model system. The corrosion reaction is suspended by plunge freezing into liquid nitrogen. The evolution of the early-stage corrosion process on the nanoscale by correlating cryo-atom probe tomography (APT) with transmission-electron microscopy (TEM) and spectroscopy, is studied. The outward growth of Mg hydroxide Mg(OH)2 and the inward growth of an intermediate corrosion layer consisting of hydrloxides of different compositions, mostly monohydroxide Mg(OH) instead of the expected MgO layer, are observed. In addition, Ca partitions to these newly formed hydroxides and oxides. Density-functional theory calculations suggest a domain of stability for this previously experimental unreported Mg(OH) phase. This new approach and these new findings advance the understanding of the early stages of magnesium corrosion, and in general reactions and processes at liquid-solid interfaces, which can further facilitate the development of corrosion-resistant materials or better control of the biodegradation rate of future implants.

6.
Microsc Microanal ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767284

RESUMEN

2D materials are emerging as promising nanomaterials for applications in energy storage and catalysis. In the wet chemical synthesis of MXenes, these 2D transition metal carbides and nitrides are terminated with a variety of functional groups, and cations such as Li+ are often used to intercalate into the structure to obtain exfoliated nanosheets. Given the various elements involved in their synthesis, it is crucial to determine the detailed chemical composition of the final product, in order to better assess and understand the relationships between composition and properties of these materials. To facilitate atom probe tomography analysis of these materials, a revised specimen preparation method is presented in this study. A colloidal Ti3C2Tz MXene solution was processed into an additive-free free-standing film and specimens were prepared using a dual beam scanning electron microscope/focused ion beam. To mechanically stabilize the fragile specimens, they were coated using an in situ sputtering technique. As various 2D material inks can be processed into such free-standing films, the presented approach is pivotal for enabling atom probe analysis of other 2D materials.

7.
Microsc Microanal ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38366381

RESUMEN

Atom probe tomography requires needle-shaped specimens with a diameter typically below 100 nm, making them both very fragile and reactive, and defects (notches at grain boundaries or precipitates) are known to affect the yield and data quality. The use of a conformal coating directly on the sharpened specimen has been proposed to increase yield and reduce background. However, to date, these coatings have been applied ex situ and mostly are not uniform. Here, we report on the controlled focused-ion beam in situ deposition of a thin metal film on specimens immediately after specimen preparation. Different metallic targets e.g. Cr were attached to a micromanipulator via a conventional lift-out method and sputtered using Ga or Xe ions. We showcase the many advantages of coating specimens from metallic to nonmetallic materials. We have identified an increase in data quality and yield, an improvement of the mass resolution, as well as an increase in the effective field-of-view. This wider field-of-view enables visualization of the entire original specimen, allowing to detect the complete surface oxide layer around the specimen. The ease of implementation of the approach makes it very attractive for generalizing its use across a very wide range of atom probe analyses.

8.
Nat Commun ; 15(1): 561, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228660

RESUMEN

Aluminum alloys play an important role in circular metallurgy due to their good recyclability and 95% energy gain when made from scrap. Their low density and high strength translate linearly to lower greenhouse gas emissions in transportation, and their excellent corrosion resistance enhances product longevity. The durability of Al alloys stems from the dense barrier oxide film strongly bonded to the surface, preventing further degradation. However, despite decades of research, the individual elemental reactions and their influence on the nanoscale characteristics of the oxide film during corrosion in multicomponent Al alloys remain unresolved questions. Here, we build up a direct correlation between the near-atomistic picture of the corrosion oxide film and the solute reactivity in the aqueous corrosion of a high-strength Al-Zn-Mg-Cu alloy. We reveal the formation of nanocrystalline Al oxide and highlight the solute partitioning between the oxide and the matrix and segregation to the internal interface. The sharp decrease in partitioning content of Mg in the peak-aged alloy emphasizes the impact of heat treatment on the oxide stability and corrosion kinetics. Through H isotopic labelling with deuterium, we provide direct evidence that the oxide acts as a trap for this element, pointing at the essential role of the Al oxide might act as a kinetic barrier in preventing H embrittlement. Our findings advance the mechanistic understanding of further improving the stability of Al oxide, guiding the design of corrosion-resistant alloys for potential applications.

9.
Adv Mater ; 36(3): e2305183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37608621

RESUMEN

MXenes are a family of 2D transition metal carbides and nitrides with remarkable properties, bearing great potential for energy storage and catalysis applications. However, their oxidation behavior is not yet fully understood, and there are still open questions regarding the spatial distribution and precise quantification of surface terminations, intercalated ions, and possible uncontrolled impurities incorporated during synthesis and processing. Here, atom probe tomography (APT) analysis of as-synthesized Ti3 C2 Tx MXenes reveals the presence of alkali (Li, Na) and halogen (Cl, F) elements as well as unetched Al. Following oxidation of the colloidal solution of MXenes, it is observed that the alkalis are enriched in TiO2 nanowires. Although these elements are tolerated through the incorporation by wet chemical synthesis, they are often overlooked when the activity of these materials is considered, particularly during catalytic testing. This work demonstrates how the capability of APT to image these elements in 3D at the near-atomic scale can help to better understand the activity and degradation of MXenes, in order to guide their synthesis for superior functional properties.

10.
Nat Commun ; 14(1): 7410, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973821

RESUMEN

Chemical short-range order (CSRO) refers to atoms of specific elements self-organising within a disordered crystalline matrix to form particular atomic neighbourhoods. CSRO is typically characterized indirectly, using volume-averaged or through projection microscopy techniques that fail to capture the three-dimensional atomistic architectures. Here, we present a machine-learning enhanced approach to break the inherent resolution limits of atom probe tomography enabling three-dimensional imaging of multiple CSROs. We showcase our approach by addressing a long-standing question encountered in body-centred-cubic Fe-Al alloys that see anomalous property changes upon heat treatment. We use it to evidence non-statistical B2-CSRO instead of the generally-expected D03-CSRO. We introduce quantitative correlations among annealing temperature, CSRO, and nano-hardness and electrical resistivity. Our approach is further validated on modified D03-CSRO detected in Fe-Ga. The proposed strategy can be generally employed to investigate short/medium/long-range ordering phenomena in different materials and help design future high-performance materials.

11.
Microsc Microanal ; 29(6): 1992-2003, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37856778

RESUMEN

Repeatable and reliable site-specific preparation of specimens for atom probe tomography (APT) at cryogenic temperatures has proven challenging. A generalized workflow is required for cryogenic specimen preparation including lift-out via focused ion beam and in situ deposition of capping layers, to strengthen specimens that will be exposed to high electric field and stresses during field evaporation in APT and protect them from environment during transfer into the atom probe. Here, we build on existing protocols and showcase preparation and analysis of a variety of metals, oxides, and supported frozen liquids and battery materials. We demonstrate reliable in situ deposition of a metallic capping layer that significantly improves the atom probe data quality for challenging material systems, particularly battery cathode materials which are subjected to delithiation during the atom probe analysis itself. Our workflow design is versatile and transferable widely to other instruments.

12.
Microsc Microanal ; 29(3): 1026-1036, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749672

RESUMEN

Measuring local chemistry of specific crystallographic features by atom probe tomography (APT) is facilitated by using transmission Kikuchi diffraction (TKD) to help position them sufficiently close to the apex of the needle-shaped specimen. However, possible structural damage associated to the energetic electrons used to perform TKD is rarely considered and is hence not well-understood. Here, in two case studies, we evidence damage in APT specimens from TKD mapping. First, we analyze a solid solution, metastable ß-Ti-12Mo alloy, in which the Mo is expected to be homogenously distributed. Following TKD, APT reveals a planar segregation of Mo among other elements. Second, specimens were prepared near Σ3 twin boundaries in a high manganese twinning-induced plasticity steel, and subsequently charged with deuterium gas. Beyond a similar planar segregation, voids containing a high concentration of deuterium, i.e., bubbles, are detected in the specimen on which TKD was performed. Both examples showcase damage from TKD mapping leading to artefacts in the distribution of solutes. We propose that the structural damage is created by surface species, including H and C, subjected to recoil from incoming energetic electrons during mapping, thereby getting implanted and causing cascades of structural damage in the sample.

13.
Microsc Microanal ; 29(3): 1077-1086, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749678

RESUMEN

Chemically resolved atomic resolution imaging can give fundamental information about material properties. However, even today, a technique capable of such achievement is still only an ambition. Here, we take further steps in developing the analytical field ion microscopy (aFIM), which combines the atomic spatial resolution of field ion microscopy (FIM) with the time-of-flight spectrometry of atom probe tomography (APT). To improve the performance of aFIM that are limited in part by a high level of background, we implement bespoke flight path time-of-flight corrections normalized by the ion flight distances traversed in electrostatic simulations modeled explicitly for an atom probe chamber. We demonstrate effective filtering in the field evaporation events upon spatially and temporally correlated multiples, increasing the mass spectrum's signal-to-background. In an analysis of pure tungsten, mass peaks pertaining to individual W isotopes can be distinguished and identified, with the signal-to-background improving by three orders of magnitude over the raw data. We also use these algorithms for the analysis of a CoTaB amorphous film to demonstrate application of aFIM beyond pure metals and binary alloys. These approaches facilitate elemental identification of the FIM-imaged surface atoms, making analytical FIM more precise and reliable.

14.
Microsc Microanal ; 29(3): 1009-1017, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749683

RESUMEN

Workflows have been developed in the past decade to enable atom probe tomography analysis at cryogenic temperatures. The inability to control the local deposition of the metallic precursor from the gas-injection system (GIS) at cryogenic temperatures makes the preparation of site-specific specimens by using lift-out extremely challenging in the focused-ion beam. Schreiber et al. exploited redeposition to weld the lifted-out sample to a support. Here, we build on their approach to attach the region-of-interest and additionally strengthen the interface with locally sputtered metal from the micromanipulator. Following standard focused-ion beam annular milling, we demonstrate atom probe analysis of Si in both laser pulsing and voltage mode, with comparable analytical performance as a presharpened microtip coupon. Our welding approach is versatile, as various metals could be used for sputtering, and allows similar flexibility as the GIS in principle.

15.
Microsc Microanal ; 29(3): 890-899, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749684

RESUMEN

The developing flexible ultrathin glass for use in foldable displays has attracted widespread attention as an alternative to rigid electronic smartphones. However, the detailed compositional effects of chemically strengthened glass are not well understood. Moreover, the spatially resolved chemistry and depth of the compression layer of tempered glass are far from clear. In this study, commonly used X-ray spectroscopy techniques and atom probe tomography (APT) were used comparatively to investigate the distribution of constituent elements in two representative smartphone glass samples: non- and chemically tempered. APT has enabled sub-nanoscale analyses of alkali metals (Li, Na, K, and Ca) and this demonstrates that APT can be considered as an alternative technique for imaging the chemical distribution in glass for mobile applications.

16.
Microsc Microanal ; 29(5): 1658-1670, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37639387

RESUMEN

Atom probe tomography (APT) is ideally suited to characterize and understand the interplay of segregation and microstructure in modern multi-component materials. Yet, the quantitative analysis typically relies on human expertise to define regions of interest. We introduce a computationally efficient, multi-stage machine learning strategy to identify compositionally distinct domains in a semi-automated way, and subsequently quantify their geometric and compositional characteristics. In our algorithmic pipeline, we first coarse-grain the APT data into voxels, collect the composition statistics, and decompose it via clustering in composition space. The composition classification then enables the real-space segmentation via a density-based clustering algorithm, thus revealing the microstructure at voxel resolution. Our approach is demonstrated for a Sm-(Co,Fe)-Zr-Cu alloy. The alloy exhibits two precipitate phases with a plate-like, but intertwined morphology. The primary segmentation is further refined to disentangle these geometrically complex precipitates into individual plate-like parts by an unsupervised approach based on principle component analysis, or a U-Net-based semantic segmentation trained on the former. Following the composition and geometric analysis, detailed composition distribution and segregation effects relative to the predominant plate-like geometry can be readily mapped from the point cloud, without resorting to the voxel compositions.

20.
ACS Energy Lett ; 8(8): 3381-3386, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588014

RESUMEN

Introduction of interstitial dopants has opened a new pathway to optimize nanoparticle catalytic activity for, e.g., hydrogen evolution/oxidation and other reactions. Here, we discuss the stability of a property-enhancing dopant, B, introduced through the controlled synthesis of an electrocatalyst Pd aerogel. We observe significant removal of B after the hydrogen oxidation reaction. Ab initio calculations show that the high stability of subsurface B in Pd is substantially reduced when H is adsorbed/absorbed on the surface, favoring its departure from the host nanostructure. The destabilization of subsurface B is more pronounced, as more H occupies surface sites and empty interstitial sites. We hence demonstrate that the H2 fuel itself favors the microstructural degradation of the electrocatalyst and an associated drop in activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA