Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Thorax ; 79(9): 811-821, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373824

RESUMEN

BACKGROUND: In patients with asthma, respiratory syncytial virus (RSV) infections can cause disease exacerbation by infecting the epithelial layer of the airways, inducing subsequent immune response. The type I interferon antiviral response of epithelial cells upon RSV infection is found to be reduced in asthma in most-but not all-studies. Moreover, the molecular mechanisms causing the differences in the asthmatic bronchial epithelium in response to viral infection are poorly understood. METHODS: Here, we investigated the transcriptional response to RSV infection of primary bronchial epithelial cells (pBECs) from patients with asthma (n=8) and healthy donors (n=8). The pBECs obtained from bronchial brushes were differentiated in air-liquid interface conditions and infected with RSV. After 3 days, cells were processed for single-cell RNA sequencing. RESULTS: A strong antiviral response to RSV was observed for all cell types, for all samples (p<1e-48). Most (1045) differentially regulated genes following RSV infection were found in cells transitioning to secretory cells. Goblet cells from patients with asthma showed lower expression of genes involved in the interferon response (false discovery rate <0.05), including OASL, ICAM1 and TNFAIP3. In multiciliated cells, an impairment of the signalling pathways involved in the response to RSV in asthma was observed. CONCLUSION: Our results highlight that the response to RSV infection of the bronchial epithelium in asthma and healthy airways was largely similar. However, in asthma, the response of goblet and multiciliated cells is impaired, highlighting the need for studying airway epithelial cells at high resolution in the context of asthma exacerbation.


Asunto(s)
Asma , Células Epiteliales , Células Caliciformes , Infecciones por Virus Sincitial Respiratorio , Humanos , Asma/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Células Caliciformes/patología , Masculino , Femenino , Células Epiteliales/virología , Células Epiteliales/metabolismo , Mucosa Respiratoria/virología , Mucosa Respiratoria/metabolismo , Adulto , Bronquios , Persona de Mediana Edad , Células Cultivadas , Virus Sincitiales Respiratorios , Cilios/patología , Estudios de Casos y Controles , Molécula 1 de Adhesión Intercelular
2.
Expert Rev Respir Med ; 17(11): 965-971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37997709

RESUMEN

INTRODUCTION: The use and generation of gene signatures have been established as a method to define molecular endotypes in complex diseases such as severe asthma. Bioinformatic approaches have now been applied to large omics datasets to define the various co-existing inflammatory and cellular functional pathways driving or characterizing a particular molecular endotype. AREAS COVERED: Molecular phenotypes and endotypes of Type 2 inflammatory pathways and also of non-Type 2 inflammatory pathways, such as IL-6 trans-signaling, IL-17 activation, and IL-22 activation, have been defined in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes dataset. There has also been the identification of the role of mast cell activation and of macrophage dysfunction in various phenotypes of severe asthma. EXPERT OPINION: Phenotyping on the basis of clinical treatable traits is not sufficient for understanding of mechanisms driving the disease in severe asthma. It is time to consider whether certain patients with severe asthma, such as those non-responsive to current therapies, including Type 2 biologics, would be better served using an approach of molecular endotyping using gene signatures for management purposes rather than the current sole reliance on blood eosinophil counts or exhaled nitric oxide measurements.


Asunto(s)
Asma , Medicina de Precisión , Humanos , Asma/diagnóstico , Asma/genética , Asma/metabolismo , Biomarcadores/metabolismo , Fenotipo , Eosinófilos/metabolismo
3.
Nat Med ; 29(6): 1563-1577, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291214

RESUMEN

Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Fibrosis Pulmonar , Humanos , Pulmón , Neoplasias Pulmonares/genética , Macrófagos
4.
Sci Immunol ; 8(83): eadh0597, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37146130

RESUMEN

Segmental allergen challenge in allergic patients with asthma reveals a previously unknown role for monocytes in the T helper 2 (TH2)-dependent inflammatory response, whereas in allergic controls without asthma, allergen unresponsiveness seems to be maintained through epithelial-myeloid cell cross-talk that prevents TH2 cell activation (see related Research Article by Alladina et al.).


Asunto(s)
Asma , Hipersensibilidad , Humanos , Alérgenos , Monocitos , Células Mieloides
5.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35086829

RESUMEN

The Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The Lung Biological Network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and cell-cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease. The discovAIR project is one of six pilot actions for the HCA funded by the European Commission in the context of the H2020 framework programme. discovAIR aims to establish the first draft of an integrated Human Lung Cell Atlas, combining single-cell transcriptional and epigenetic profiling with spatially resolving techniques on matched tissue samples, as well as including a number of chronic and infectious diseases of the lung. The integrated Human Lung Cell Atlas will be available as a resource for the wider respiratory community, including basic and translational scientists, clinical medicine, and the private sector, as well as for patients with lung disease and the interested lay public. We anticipate that the Human Lung Cell Atlas will be the founding stone for a more detailed understanding of the pathogenesis of lung diseases, guiding the design of novel diagnostics and preventive or curative interventions.


Asunto(s)
Enfermedades Pulmonares , Pulmón , Humanos , Proteómica , Tórax
6.
J Enzyme Inhib Med Chem ; 25(2): 204-15, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20222763

RESUMEN

Attenuation of protein kinases by selective inhibitors is an extremely active field of activity in anticancer drug development. Therefore, Akt, a serine/threonine protein kinase, also known as protein kinase B (PKB), represents an attractive potential target for therapeutic intervention. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel inhibitors with various heterocycle scaffolds. Based on previous results obtained on the antiproliferative activities of new pyrrolo[1,2-a]quinoxalines, a novel series was designed and synthesized from various substituted phenyl-1H-pyrrole-2-carboxylic acid alkyl esters via a multistep heterocyclization process. These new compounds were tested for their in vitro ability to inhibit the proliferation of the human leukemic cell lines K562, U937, and HL60, and the breast cancer cell line MCF7. The first biological evaluation of our new substituted pyrrolo[1,2-a]quinoxalines showed antiproliferative activity against the tested cell lines. From a general SAR point of view, these preliminary biological results highlight the importance of substitution at the C-4 position of the pyrroloquinoxaline scaffold by a benzylpiperidinyl fluorobenzimidazole group, and also the need for a functionalization on the pyrrole ring.


Asunto(s)
Bencimidazoles/química , Proliferación Celular/efectos de los fármacos , Ésteres/química , Ésteres/síntesis química , Ésteres/farmacología , Piperidinas/química , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirroles/química , Pirroles/síntesis química , Pirroles/farmacología , Quinoxalinas/química , Quinoxalinas/síntesis química , Quinoxalinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Diseño de Fármacos , Femenino , Humanos , Leucemia/tratamiento farmacológico , Leucemia/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA