Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Science ; 372(6541): 508-511, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33858990

RESUMEN

Improving materials used to make qubits is crucial to further progress in quantum information processing. Of particular interest are semiconductor-superconductor heterostructures that are expected to form the basis of topological quantum computing. We grew semiconductor indium antimonide nanowires that were coated with shells of tin of uniform thickness. No interdiffusion was observed at the interface between Sn and InSb. Tunnel junctions were prepared by in situ shadowing. Despite the lack of lattice matching between Sn and InSb, a 15-nanometer-thick shell of tin was found to induce a hard superconducting gap, with superconductivity persisting in magnetic field up to 4 teslas. A small island of Sn-InSb exhibits the two-electron charging effect. These findings suggest a less restrictive approach to fabricating superconducting and topological quantum circuits.

2.
Nanotechnology ; 32(9): 095001, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33142271

RESUMEN

We study hysteretic magnetoresistance in InSb nanowires due to stray magnetic fields from CoFe micromagnets. Devices without any ferromagnetic components show that the magnetoresistance of InSb nanowires commonly exhibits either a local maximum or local minimum at zero magnetic field. Switching of microstrip magnetizations then results in positive or negative hysteretic dependence as conductance maxima or minima shift with respect to the global external field. Stray fields are found to be in the range of tens of millitesla, comparable to the scale over which the nanowire magnetoresistance develops. We observe that the stray field signal is similar to that obtained in devices with ferromagnetic contacts (spin valves). We perform micromagnetic simulations which are in reasonable agreement with the experiment. The use of locally varying magnetic fields may bring new ideas for Majorana circuits in which nanowire networks require control over field orientation at the nanoscale.

3.
Phys Rev Lett ; 121(12): 127705, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30296125

RESUMEN

We study transport mediated by Andreev bound states formed in InSb nanowire quantum dots. Two kinds of superconducting source and drain contacts are used: epitaxial Al/InSb devices exhibit a doubling of tunneling resonances, while, in NbTiN/InSb devices, Andreev spectra of the dot appear to be replicated multiple times at increasing source-drain bias voltages. In both devices, a mirage of a crowded spectrum is created. To describe the observations a model is developed that combines the effects of a soft induced gap and of additional Andreev bound states both in the quantum dot and in the finite regions of the nanowire adjacent to the quantum dot. Understanding of Andreev spectroscopy is important for the correct interpretation of Majorana experiments done on the same structures.

4.
Nano Lett ; 17(2): 599-605, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28002677

RESUMEN

The functionality of semiconductor devices is determined by the incorporation of dopants at concentrations down to the parts per million (ppm) level and below. Optimization of intentional and unintentional impurity doping relies on methods to detect and map the level of impurities. Detecting such low concentrations of impurities in nanostructures is however challenging to date as on the one hand methods used for macroscopic samples cannot be applied due to the inherent small volumes or faceted surfaces and on the other hand conventional microscopic analysis techniques are not sufficiently sensitive. Here, we show that we can detect and map impurities at the ppm level in semiconductor nanowires using atom probe tomography. We develop a method applicable to a wide variety of nanowires relevant for electronic and optical devices. We expect that it will contribute significantly to the further optimization of the synthesis of nanowires, nanostructures and devices based on these structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA