Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731447

RESUMEN

Neuromuscular blocking agents (NMBAs) are routinely used during anesthesia to relax skeletal muscle. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels; NMBAs can induce muscle paralysis by preventing the neurotransmitter acetylcholine (ACh) from binding to nAChRs situated on the postsynaptic membranes. Despite widespread efforts, it is still a great challenge to find new NMBAs since the introduction of cisatracurium in 1995. In this work, an effective ensemble-based virtual screening method, including molecular property filters, 3D pharmacophore model, and molecular docking, was applied to discover potential NMBAs from the ZINC15 database. The results showed that screened hit compounds had better docking scores than the reference compound d-tubocurarine. In order to further investigate the binding modes between the hit compounds and nAChRs at simulated physiological conditions, the molecular dynamics simulation was performed. Deep analysis of the simulation results revealed that ZINC257459695 can stably bind to nAChRs' active sites and interact with the key residue Asp165. The binding free energies were also calculated for the obtained hits using the MM/GBSA method. In silico ADMET calculations were performed to assess the pharmacokinetic properties of hit compounds in the human body. Overall, the identified ZINC257459695 may be a promising lead compound for developing new NMBAs as an adjunct to general anesthesia, necessitating further investigations.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Bloqueantes Neuromusculares , Receptores Nicotínicos , Bloqueantes Neuromusculares/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Humanos , Descubrimiento de Drogas/métodos , Unión Proteica , Sitios de Unión , Ligandos
2.
Eur J Med Chem ; 264: 116028, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086190

RESUMEN

The occurrence and development of the tumor are very complex biological processes. In recent years, a large number of research data shows that CD73 is closely related to tumor growth and metastasis. It has been confirmed that the cascade hydrolysis of extracellular ATP to adenosine is one of the most important immunosuppressive regulatory pathways in the tumor microenvironment. The metabolite adenosine can mediate immunosuppression by activating adenosine receptor (such as A2A) on effector Immune cells and enable tumor cells to achieve immune escape. Therefore, attenuating or completely removing adenosine-mediated immunosuppression in the tumor microenvironment by inhibiting CD73 is a promising approach in the treatment of solid tumors. This paper focuses on the research progress of CD73 enzyme and CD73 small molecule inhibitors, and is expected to provide some insights into the development of small-molecule antitumor drugs targeting CD73.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Adenosina/farmacología , Adenosina/metabolismo , Antineoplásicos/farmacología , Inmunosupresores , Receptores Purinérgicos P1 , 5'-Nucleotidasa , Microambiente Tumoral
3.
Bioorg Chem ; 133: 106403, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801790

RESUMEN

Our previous studies suggested that N-phenyl aromatic amides are a class of promising xanthine oxidase (XO) inhibitor chemotypes. In this effort, several series of N-phenyl aromatic amide derivatives (4a-h, 5-9, 12i-w, 13n, 13o, 13r, 13s, 13t and 13u) were designed and synthesized to carry out an extensive structure-activity relationship (SAR). The investigation provided some valuable SAR information and identified N-(3-(1H-imidazol-1-yl)-4-((2-methylbenzyl)oxy)phenyl)-1H-imidazole-4-carboxamide (12r, IC50 = 0.028 µM) as the most potent XO inhibitor with close in vitro potency to that of topiroxostat (IC50 = 0.017 µM). Molecular docking and molecular dynamics simulation rationalized the binding affinity through a series of strong interactions with the residues Glu1261, Asn768, Thr1010, Arg880, Glu802, etc. In vivo hypouricemic studies also suggested that the uric acid lowering effect of compound 12r was improved compared with the lead g25 (30.61 % vs 22.4 % reduction in uric acid levels at 1 h; 25.91 % vs 21.7 % reduction in AUC of uric acid) . Pharmacokinetic studies revealed that compound 12r presented a short t1/2 of 0.25 h after oral administration. In addition, 12r has non-cytotoxicity against normal cell HK-2. This work may provide some insights for further development of novel amide-based XO inhibitors.


Asunto(s)
Radioisótopos de Nitrógeno , Xantina Oxidasa , Amidas/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Ácido Úrico , Xantina Oxidasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA