RESUMEN
The topic of polymers with dynamic bonds (stickers) appears as an exciting and promising area of materials science, thanks to their attractive self-healable, recyclable, extremely tough, and super extensible properties. Polymers with phase separated dynamic bonds revealed several unique properties, but mechanisms controlling their viscoelastic properties remain poorly understood. In this work, we present a dynamic analysis of a model polymer system with phase separated hydrogen bonding functionalities. The results confirm that terminal relaxation in these systems is independent of polymer segmental dynamics and is instead controlled by structural relaxations in clusters of stickers. Detailed analysis revealed a surprising result: terminal relaxation time of these systems has weaker temperature dependence than that of structural relaxation in clusters, although the former is slower than the latter. Borrowing ideas from the field of block copolymers, we ascribed this unusual result to an LCST-like behavior for the miscibility of the stickers in the polymer matrix. The presented results and ideas deepen the understanding of the viscoelasticity for polymers with dynamic bonds, enabling intelligent design of functional materials with desired macroscopic properties.
RESUMEN
Materials with tunable modulus, viscosity, and complex viscoelastic spectra are crucial in applications such as self-healing, additive manufacturing, and energy damping. It is still challenging to predictively design polymer networks with hierarchical relaxation processes, as many competing factors affect dynamics. Here, networks with both pendant and telechelic architecture are synthesized with mixed orthogonal dynamic bonds to understand how the network connectivity and bond exchange mechanisms govern the overall relaxation spectrum. A hydrogen-bonding group and a vitrimeric dynamic crosslinker are combined into the same network, and multimodal relaxation is observed in both pendant and telechelic networks. This is in stark contrast to similar networks where two dynamic bonds share the same exchange mechanism. With the incorporation of orthogonal dynamic bonds, the mixed network also demonstrates excellent damping and improved mechanical properties. In addition, two relaxation processes arise when only hydrogen-bond exchange is present, and both modes are retained in the mixed dynamic networks. This work provides molecular insights for the predictive design of hierarchical dynamics in soft materials.
RESUMEN
The structural design of self-healing materials determines the ultimate performance of the product that can be used in a wide range of applications. Incorporating intrinsic self-healing moieties into puncture-resistant materials could significantly improve the failure resistance and product longevity, since their rapidly rebuilt bonds will provide additional recovery force to resist the external force. Herein, we present a series of tailored urea-modified poly(dimethylsiloxane)-based self-healing polymers (U-PDMS-SPs) that exhibit excellent puncture-resistant properties, fast autonomous self-healing, multi-cycle adhesion capabilities, and well-tunable mechanical properties. Controlling the composition of chemical and physical cross-links enables the U-PDMS-SPs to have an extensibility of 528% and a toughness of 0.6 MJ m-3. U-PDMS-SPs exhibit fast autonomous self-healability with 25% strain recovery within 2 minutes of healing, and over 90% toughness recovery after 16 hours. We further demonstrate its puncture-resistant properties under the ASTM D5748 standard with an unbreakable feature. Furthermore, the multi-cycle adhesive properties of U-PDMS-SPs are also revealed. High puncture resistance (>327 mJ) and facile adhesion with rapid autonomous self-healability will have a broad impact on the design of adhesives, roofing materials, and many other functional materials with enhanced longevity.
RESUMEN
Incorporation of dynamic (reversible) bonds within polymer structure enables properties such as self-healing, shape transformation, and recyclability. These dynamic bonds, sometimes refer as stickers, can form clusters by phase-segregation from the polymer matrix. These systems can exhibit interesting viscoelastic properties with an unusually high and extremely long rubbery plateau. Understanding how viscoelastic properties of these materials are controlled by the hierarchical structure is crucial for engineering of recyclable materials for various future applications. Here we studied such systems made from short telechelic polydimethylsiloxane chains by employing a broad range of experimental techniques. We demonstrate that formation of a percolated network of interfacial layers surrounding clusters enhances mechanical modulus in these phase-separated systems, whereas single chain hopping between the clusters results in macroscopic flow. On the basis of the results, we formulated a general scenario describing viscoelastic properties of phase-separated dynamic polymers, which will foster development of recyclable materials with tunable rheological properties.
RESUMEN
Tough adhesives provide resistance against high debonding forces, and these adhesives are difficult to design because of the simultaneous requirement of strength and ductility. Here, we report a design of tough reversible/recyclable adhesive materials enabled by incorporating dynamic covalent bonds of boronic ester into commodity triblock thermoplastic elastomers that reversibly bind with various fillers and substrates. The spectroscopic measurements and density functional theory calculations unveil versatile dynamic covalent binding of boronic ester with various hydroxy-terminated surfaces such as silica nanoparticles, aluminum, steel, and glass. The designed multiphase material exhibits exceptionally high adhesion strength and work of debonding with a rebonding capability, as well as outstanding mechanical, thermal, and chemical resistance properties. Bonding and debonding at the interfaces dictate hybrid material properties, and this revelation of tailored dynamic interactions with multiple interfaces will open up a new design of adhesives and hybrid materials.
RESUMEN
Supramolecular associations provide a promising route to functional materials with properties such as self-healing, easy recyclability or extraordinary mechanical strength and toughness. The latter benefit especially from the transient character of the formed network, which enables dissipation of energy as well as regeneration of the internal structures. However, recent investigations revealed intrinsic limitations in the achievable mechanical enhancement. This manuscript presents studies of a set of telechelic polymers with hydrogen-bonding chain ends exhibiting an extraordinarily high, almost glass-like, rubbery plateau. This is ascribed to the segregation of the associative ends into clusters and formation of an interfacial layer surrounding these clusters. An approach adopted from the field of polymer nanocomposites provides a quantitative description of the data and reveals the strongly altered mechanical properties of the polymer in the interfacial layer. These results demonstrate how employing phase separating dynamic bonds can lead to the creation of high-performance materials.
Asunto(s)
Nanocompuestos , Goma , Vidrio , Enlace de Hidrógeno , Polímeros/químicaRESUMEN
Recent findings that the association bond lifetimes τα* in associating polymers diverge from their supramolecular network relaxation times τc challenge past theories. The bond lifetime renormalization proposed by Rubinstein and coworkers [Stukalin et al., Macromolecules, 2013, 46, 7525] provides a promising explanation. To examine systematically its applicability, we employ shear rheology and dielectric spectroscopy to study telechelic associating polymers with different main chain (polypropylene glycol and polydimethylsiloxane), molecular weight (below entanglement molecular weight) and end groups (amide, and carboxylic acid) which form dimeric associations by hydrogen bonding. The separation between τc (probed by rheology) and τα* (probed by dielectric spectroscopy) strongly increases with chain length as qualitatively predicted by the model. However, to describe the increase quantitatively, a transition from Rouse to reptation dynamics must be assumed. This suggests that dynamics of super-chains must be considered to properly describe the transient network.
RESUMEN
Polymers which can form supramolecular networks are a promising class of materials to provide highly sought-after properties such as self-healing, enhanced mechanical strength, super-stretchability as well as easy recyclability. However, due to the vast range of possible chemical structures it is very demanding to optimize these materials for the desired performance. Consequently, a detailed understanding of the molecular processes that govern the macroscopic properties is paramount to their technological application. Here we discuss some telechelic model systems with hydrogen-bonding end groups and how dielectric spectroscopy in combination with linear oscillatory shear rheology helped to understand the association mechanism on a molecular scale, and verify the model of bond-lifetime renormalization. Furthermore, we analyze a limitation of these H-bonding polymers, namely that there is a trade-off between high plateau modulus and long terminal relaxation time --both cannot be maximized at the same time. Finally, we show how more complex end groups phase separate from the main chain melt and thus lead to a more sophisticated rheological behavior which can overcome that limitation.