RESUMEN
Chemotherapy remains a prevalent treatment for a wide range of tumors; however, the majority of patients undergoing conventional chemotherapy experience varying levels of chemoresistance, ultimately leading to suboptimal outcomes. The present article provided an indepth review of chemotherapy resistance in tumors, emphasizing the underlying factors contributing to this resistance in tumor cells. It also explored recent advancements in the identification of key molecules and molecular mechanisms within the primary chemoresistant pathways.
Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.