Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Plant Sci ; 15: 1386877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919821

RESUMEN

Anthracnose, white mold, powdery mildew, and root rot caused by Colletotrichum lindemuthianum, Scletorinia sclerotiorum, Erysiphe spp., and Pythium ultimum, respectively, are among the most frequent diseases that cause significant production losses worldwide in common bean (Phaseolus vulgaris L.). Reactions against these four fungal diseases were investigated under controlled conditions using a diversity panel of 311 bean lines for snap consumption (Snap bean Panel). The genomic regions involved in these resistance responses were identified based on a genome-wide association study conducted with 16,242 SNP markers. The highest number of resistant lines was observed against the three C. lindemuthianum isolates evaluated: 156 lines were resistant to CL124 isolate, 146 lines resistant to CL18, and 109 lines were resistant to C531 isolate. Two well-known anthracnose resistance clusters were identified, the Co-2 on chromosome Pv11 for isolates CL124 and CL18, and the Co-3 on chromosome Pv04 for isolates CL124 and C531. In addition, other lesser-known regions of anthracnose resistance were identified on chromosomes Pv02, Pv06, Pv08, and Pv10. For the white mold isolate tested, 24 resistant lines were identified and the resistance was localized to three different positions on chromosome Pv08. For the powdery mildew local isolate, only 12 resistant lines were identified, and along with the two previous resistance genes on chromosomes Pv04 and Pv11, a new region on chromosome Pv06 was also identified. For root rot caused by Pythium, 31 resistant lines were identified and two main regions were located on chromosomes Pv04 and Pv05. Relevant information for snap bean breeding programs was provided in this work. A total of 20 lines showed resistant or intermediate responses against four or five isolates, which can be suitable for sustainable farm production and could be used as resistance donors. Potential genes and genomic regions to be considered for targeted improvement were provided, including new or less characterized regions that should be validated in future works. Powdery mildew disease was identified as a potential risk for snap bean production and should be considered a main goal in breeding programs.

2.
New Phytol ; 243(3): 1247-1261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837425

RESUMEN

The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.


Asunto(s)
Haplotipos , Fenotipo , Pisum sativum , Fitomejoramiento , Pisum sativum/genética , Haplotipos/genética , Genes de Plantas , Proteínas de Plantas/genética , Mutación/genética , Hojas de la Planta/genética , Cruzamiento , Factores de Transcripción/genética , Variación Genética
3.
Theor Appl Genet ; 137(1): 8, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092992

RESUMEN

KEY MESSAGE: R-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean. In common bean, BAT93 was reported to carry the R-BPMV resistance gene conferring resistance to BPMV and linked with the I resistance gene. To fine map R-BPMV, 182 recombinant inbred lines (RILs) derived from the cross BAT93 × JaloEEP558 were genotyped with polymerase chain reaction (PCR)-based markers developed using genome assemblies from G19833 and BAT93, as well as BAT93 BAC clone sequences. Analysis of RILs carrying key recombination events positioned R-BPMV to a target region containing at least 16 TIR-NB-LRR (TNL) sequences in BAT93. Because the I cluster presents a suppression of recombination and a large number of repeated sequences, none of the 16 TNLs could be excluded as R-BPMV candidate gene. The evolutionary history of the TNLs for the I cluster were reconstructed using microsynteny and phylogenetic analyses within the legume family. A single I TNL was present in Medicago truncatula and lost in soybean, mirroring the absence of complete BPMV resistance in soybean. Amplification of TNLs in the I cluster predates the divergence of the Phaseolus species, in agreement with the emergence of R-BPMV before the separation of the common bean wild centers of diversity. This analysis provides PCR-based markers useful in marker-assisted selection (MAS) and laid the foundation for cloning of R-BPMV resistance gene in order to transfer the resistance into soybean.


Asunto(s)
Comovirus , Phaseolus , Phaseolus/genética , Filogenia , Genotipo , Glycine max/genética
4.
Plants (Basel) ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956473

RESUMEN

Bean anthracnose caused by the hemibiotrophic fungus Colletotrichum lindemuthianum is one of the most important diseases of common bean (Phaseolus vulgaris) in the world. In the present study, the whole transcriptome of common bean infected with C. lindemuthianum during compatible and incompatible interactions was characterized at 48 and 72 hpi, corresponding to the biotrophy phase of the infection cycle. Our results highlight the prominent role of pathogenesis-related (PR) genes from the PR10/Bet vI family as well as a complex interplay of different plant hormone pathways including Ethylene, Salicylic acid (SA) and Jasmonic acid pathways. Gene Ontology enrichment analysis reveals that infected common bean seedlings responded by down-regulation of photosynthesis, ubiquitination-mediated proteolysis and cell wall modifications. In infected common bean, SA biosynthesis seems to be based on the PAL pathway instead of the ICS pathway, contrarily to what is described in Arabidopsis. Interestingly, ~30 NLR were up-regulated in both contexts. Overall, our results suggest that the difference between the compatible and incompatible reaction is more a question of timing and strength, than a massive difference in differentially expressed genes between these two contexts. Finally, we used RT-qPCR to validate the expression patterns of several genes, and the results showed an excellent agreement with deep sequencing.

5.
Front Plant Sci ; 13: 871633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812909

RESUMEN

Powdery mildew is one of the most important diseases of flax and is particularly prejudicial to its yield and oil or fiber quality. This disease, caused by the obligate biotrophic ascomycete Oïdium lini, is progressing in France. Genetic resistance of varieties is critical for the control of this disease, but very few resistance genes have been identified so far. It is therefore necessary to identify new resistance genes to powdery mildew suitable to the local context of pathogenicity. For this purpose, we studied a worldwide diversity panel composed of 311 flax genotypes both phenotyped for resistance to powdery mildew resistance over 2 years of field trials in France and resequenced. Sequence reads were mapped on the CDC Bethune reference genome revealing 1,693,910 high-quality SNPs, further used for both population structure analysis and genome-wide association studies (GWASs). A number of four major genetic groups were identified, separating oil flax accessions from America or Europe and those from Asia or Middle-East and fiber flax accessions originating from Eastern Europe and those from Western Europe. A number of eight QTLs were detected at the false discovery rate threshold of 5%, located on chromosomes 1, 2, 4, 13, and 14. Taking advantage of the moderate linkage disequilibrium present in the flax panel, and using the available genome annotation, we identified potential candidate genes. Our study shows the existence of new resistance alleles against powdery mildew in our diversity panel, of high interest for flax breeding program.

6.
Plants (Basel) ; 11(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35270047

RESUMEN

Snap beans are a group of bean cultivars grown for their edible immature pods. The objective of this work was to characterize the diversity of pod phenotypes in a snap bean panel (SBP), comprising 311 lines collected in Europe, and establish a core set (Core-SBP) with the maximum diversity of pod phenotypes. Phenotyping of the SBP was carried out over two seasons based on 14 quantitative pod dimension traits along with three qualitative traits: pod color, seed coat color, and growth habit. Phenotypes were grouped into 54 classes using a hierarchical method, and a Core-SBP with one line per phenotype class was established. A further field-based evaluation of the Core-SBP revealed higher diversity index values than those obtained for the SBP. The Core-SBP was also genotyped using 24 breeder-friendly DNA markers tagging 21 genomic regions previously associated with pod trait control. Significant marker-trait associations were found for 11 of the 21 analyzed regions as well as the locus fin. The established Core-SBP was a first attempt to classify snap bean cultivars based on pod morphology and constituted a valuable source of characteristics for future breeding programs and genetic analysis.

7.
Plant J ; 108(3): 646-660, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34427014

RESUMEN

Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.


Asunto(s)
Productos Agrícolas/genética , Fabaceae/genética , Banco de Semillas , Bases de Datos Genéticas , Europa (Continente) , Genotipo , Cooperación Internacional , Semillas/genética
8.
Viruses ; 13(7)2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206842

RESUMEN

In the context of climate change, elevated temperature is a major concern due to the impact on plant-pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant-virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.


Asunto(s)
Comovirus/genética , Comovirus/patogenicidad , Resistencia a la Enfermedad/genética , Genotipo , Calor , Phaseolus/virología , Temperatura , Silenciador del Gen , Vectores Genéticos , Fenotipo , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Virosis
9.
J Exp Bot ; 72(10): 3569-3581, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33693665

RESUMEN

Identifying the molecular basis of resistance to pathogens is critical to promote a chemical-free cropping system. In plants, nucleotide-binding leucine-rich repeat constitute the largest family of disease resistance (R) genes, but this resistance can be rapidly overcome by the pathogen, prompting research into alternative sources of resistance. Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the most important diseases of common bean. This study aimed to identify the molecular basis of Co-x, an anthracnose R gene conferring total resistance to the extremely virulent C. lindemuthianum strain 100. To that end, we sequenced the Co-x 58 kb target region in the resistant JaloEEP558 (Co-x) common bean and identified KTR2/3, an additional gene encoding a truncated and chimeric CRINKLY4 kinase, located within a CRINKLY4 kinase cluster. The presence of KTR2/3 is strictly correlated with resistance to strain 100 in a diversity panel of common beans. Furthermore, KTR2/3 expression is up-regulated 24 hours post-inoculation and its transient expression in a susceptible genotype increases resistance to strain 100. Our results provide evidence that Co-x encodes a truncated and chimeric CRINKLY4 kinase probably resulting from an unequal recombination event that occurred recently in the Andean domesticated gene pool. This atypical R gene may act as a decoy involved in indirect recognition of a fungal effector.


Asunto(s)
Colletotrichum , Phaseolus , Mapeo Cromosómico , Genes de Plantas , Phaseolus/genética , Enfermedades de las Plantas
10.
Genes (Basel) ; 13(1)2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-35052407

RESUMEN

RNA silencing serves key roles in a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity. Dicer, Argonaute (AGO), double-stranded RNA binding (DRB) proteins, RNA-dependent RNA polymerase (RDR), and DNA-dependent RNA polymerases known as Pol IV and Pol V form core components to trigger RNA silencing. Common bean (Phaseolus vulgaris) is an important staple crop worldwide. In this study, we aimed to unravel the components of the RNA-guided silencing pathway in this non-model plant, taking advantage of the availability of two genome assemblies of Andean and Meso-American origin. We identified six PvDCLs, thirteen PvAGOs, 10 PvDRBs, 5 PvRDRs, in both genotypes, suggesting no recent gene amplification or deletion after the gene pool separation. In addition, we identified one PvNRPD1 and one PvNRPE1 encoding the largest subunits of Pol IV and Pol V, respectively. These genes were categorized into subgroups based on phylogenetic analyses. Comprehensive analyses of gene structure, genomic localization, and similarity among these genes were performed. Their expression patterns were investigated by means of expression models in different organs using online data and quantitative RT-PCR after pathogen infection. Several of the candidate genes were up-regulated after infection with the fungus Colletotrichum lindemuthianum.


Asunto(s)
Colletotrichum/fisiología , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Phaseolus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Phaseolus/crecimiento & desarrollo , Phaseolus/inmunología , Phaseolus/microbiología , Filogenia , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Transcriptoma
11.
Genes (Basel) ; 11(7)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708324

RESUMEN

Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected Arabidopsis Fluorescent Tagged Lines (FTL) with the virulent bacteria Pseudomonas syringae. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in Arabidopsis may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.


Asunto(s)
Recombinación Homóloga , Meiosis , Enfermedades de las Plantas/genética , Arabidopsis , Cromosomas de las Plantas/química , Cromosomas de las Plantas/genética , Colorantes Fluorescentes/química , Proteínas NLR/genética , Enfermedades de las Plantas/microbiología , Polen/genética , Polen/microbiología , Pseudomonas syringae/patogenicidad
12.
Front Plant Sci ; 9: 1185, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154814

RESUMEN

Subtelomeres of most eukaryotes contain fast-evolving genes usually involved in adaptive processes. In common bean (Phaseolus vulgaris), the Co-2 anthracnose resistance (R) locus corresponds to a cluster of nucleotide-binding-site leucine-rich-repeat (NL) encoding sequences, the prevalent class of plant R genes. To study the recent evolution of this R gene cluster, we used a combination of sequence, genetic and cytogenetic comparative analyses between common bean genotypes from two distinct gene pools (Andean and Mesoamerican) that diverged 0.165 million years ago. Co-2 is a large subtelomeric cluster on chromosome 11 comprising from 32 (Mesoamerican) to 52 (Andean) NL sequences embedded within khipu satellite repeats. Since the recent split between Andean and Mesoamerican gene pools, the Co-2 cluster has experienced numerous gene-pool specific NL losses, leading to distinct NL repertoires. The high proportion of solo-LTR retrotransposons indicates that the Co-2 cluster is located in a hot spot of unequal intra-strand homologous recombination. Furthermore, we observe large segmental duplications involving both Non-Homologous End Joining and Homologous Recombination double-strand break repair pathways. Finally, the identification of a Mesoamerican-specific subtelomeric sequence reveals frequent interchromosomal recombinations between common bean subtelomeres. Altogether, our results highlight that common bean subtelomeres are hot spots of recombination and favor the rapid evolution of R genes. We propose that chromosome ends could act as R gene incubators in many plant genomes.

13.
Mol Plant Pathol ; 19(11): 2516-2523, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30011120

RESUMEN

Crop diseases cause significant yield losses, and the use of resistant cultivars can effectively mitigate these losses and control many plant diseases. Most plant resistance (R) genes encode immune receptors composed of nucleotide-binding and leucine-rich repeat (NLR) domains. These proteins mediate the specific recognition of pathogen avirulence effectors to induce defence responses. However, NLR-triggered immunity can be associated with a reduction in growth and yield, so-called 'fitness costs'. Recent data have shown that plants use an elaborate interplay of different mechanisms to control NLR gene transcript levels, as well as NLR protein abundance and activity, to avoid the associated cost of resistance in the absence of a pathogen. In this review, we discuss the different levels of NLR regulation (transcriptional, post-transcriptional and at the protein level). We address the apparent need for plants to maintain diverse modes of regulation. A recent model suggesting an equilibrium 'ON/OFF state' of NLR proteins, in the absence of a pathogen, provides the context for our discussion.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas NLR/metabolismo , Plantas/genética , Plantas/inmunología , Regulación de la Expresión Génica de las Plantas , Proteínas NLR/genética , Inmunidad de la Planta/genética
14.
New Phytol ; 219(3): 1112-1123, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29897103

RESUMEN

The presence of seed color in common bean (Phaseolus vulgaris) requires the dominant-acting P (pigment) gene, and white seed is a recessive phenotype in all domesticated races of the species. P was classically associated with seed size, thus describing it as the first genetic marker for a quantitative trait. The molecular structure of P was characterized to understand the selection of white seeds during bean diversification and the relationship of P to seed weight. P was identified by homology searches, a genome-wide association study (GWAS) and gene remodeling, and confirmed by gene silencing. Allelic variation was assessed by a combination of resequencing and marker development, and the relationship between P and seed weight was assessed by a GWAS study. P is a member of clade B of subclass IIIf of plant basic helix-loop-helix (bHLH) proteins. Ten race-specific P alleles conditioned the white seed phenotype, and each causative mutation affected at least one bHLH domain required for color expression. GWAS analysis confirmed the classic association of P with seed weight. In common bean, white seeds are the result of convergent evolution and, among plant species, orthologous convergence on a single transcription factor gene was observed.


Asunto(s)
Evolución Molecular , Genes de Plantas , Phaseolus/genética , Phaseolus/fisiología , Pigmentación/genética , Semillas/genética , Alelos , Mapeo Cromosómico , Redes Reguladoras de Genes , Silenciador del Gen , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Filogenia , Sitios de Carácter Cuantitativo/genética
15.
DNA Res ; 25(2): 161-172, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29149287

RESUMEN

In plants, a key class of genes comprising most of disease resistance (R) genes encodes Nucleotide-binding leucine-rich repeat (NL) proteins. Access to common bean (Phaseolus vulgaris) genome sequence provides unparalleled insight into the organization and evolution of this large gene family (∼400 NL) in this important crop. As observed in other plant species, most common bean NL are organized in cluster of genes. However, a particularity of common bean is that these clusters are often located in subtelomeric regions close to terminal knobs containing the satellite DNA khipu. Phylogenetically related NL are spread between different chromosome ends, suggesting frequent exchanges between non-homologous chromosomes. NL peculiar location, in proximity to heterochromatic regions, led us to study their DNA methylation status using a whole-genome cytosine methylation map. In common bean, NL genes displayed an unusual body methylation pattern since half of them are methylated in the three contexts, reminiscent of the DNA methylation pattern of repeated sequences. Moreover, 90 NL were also abundantly targeted by 24 nt siRNA, with 90% corresponding to methylated NL genes. This suggests the existence of a transcriptional gene silencing mechanism of NL through the RdDM (RNA-directed DNA methylation) pathway in common bean that has not been described in other plant species.


Asunto(s)
Metilación de ADN , ADN Satélite , Resistencia a la Enfermedad , Proteínas NLR/genética , Phaseolus/genética , Epigénesis Genética , Epigenómica , Genes de Plantas , Genómica , Phaseolus/metabolismo , Phaseolus/fisiología , Enfermedades de las Plantas , Análisis de Secuencia de ADN
16.
Plant Sci ; 265: 39-50, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29223341

RESUMEN

Viruses are obligate parasites that replicate intracellularly in many living organisms, including plants. Consequently, no chemicals are available that target only the virus without impacting host cells or vector organisms. The use of natural resistant varieties appears as the most reliable control strategy and remains the best and cheapest option in managing virus diseases, especially in the current ecological context of preserving biodiversity and environment in which the use of phytosanitary products becomes limited. Common bean is a grain legume cultivated mainly in Africa and Central-South America. Virus diseases of common bean have been extensively studied both by breeders to identify natural resistance genes in existing germplasms and by pathologists to understand the molecular bases of plant-virus interactions. Here we present a critical review in which we synthesize previous and recent information concerning 1) main viruses causing diseases in common bean, 2) genetic resistance to viruses in common bean, 3) the different resistance phenotypes observed and more particularly the effect of temperature, 4) the molecular bases of resistance genes to viruses in common bean, and 5) future prospects using transgenic-engineered resistant lines.


Asunto(s)
Resistencia a la Enfermedad/genética , Phaseolus/genética , Enfermedades de las Plantas/genética , Virus de Plantas/fisiología , Phaseolus/virología , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética
17.
Methods Mol Biol ; 1654: 311-319, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28986801

RESUMEN

Plant viral vectors have been developed to facilitate gene function studies especially in plant species not amenable to traditional mutational or transgenic modifications. In the Fabaceae plant family, the most widely used viral vector is derived from Bean pod mottle virus (BPMV). Originally developed for overexpression of foreign proteins and VIGS studies in soybean, we adapted the BPMV-derived vector for use in other legume species such as Phaseolus vulgaris and Pisum sativum. Here, we describe a protocol for efficient protein expression and virus-induced gene silencing (VIGS) in Pisum sativum leaves and roots using the "one-step" Bean pod mottle virus (BPMV) viral vector.


Asunto(s)
Comovirus/genética , Silenciador del Gen/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Vectores Genéticos/genética , Glycine max/genética
18.
Protoplasma ; 254(2): 791-801, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27335007

RESUMEN

Common bean (Phaseolus vulgaris) subtelomeres are highly enriched for khipu, the main satellite DNA identified so far in this genome. Here, we comparatively investigate khipu genomic organization in Phaseolus species from different clades. Additionally, we identified and characterized another satellite repeat, named jumper, associated to khipu. A mixture of P. vulgaris khipu clones hybridized in situ confirmed the presence of khipu-like sequences on subterminal chromosome regions in all Phaseolus species, with differences in the number and intensity of signals between species and when species-specific clones were used. Khipu is present as multimers of ∼500 bp and sequence analyses of cloned fragments revealed close relationship among khipu repeats. The new repeat, named jumper, is a 170-bp satellite sequence present in all Phaseolus species and inserted into the nontranscribed spacer (NTS) of the 5S rDNA in the P. vulgaris genome. Nevertheless, jumper was found as a high-copy repeat at subtelomeres and/or pericentromeres in the Phaseolus microcarpus lineage only. Our data argue for khipu as an important subtelomeric satellite DNA in the genus and for a complex satellite repeat composition of P. microcarpus subtelomeres, which also contain jumper. Furthermore, the differential amplification of these repeats in subtelomeres or pericentromeres reinforces the presence of a dynamic satellite DNA library in Phaseolus.


Asunto(s)
ADN de Plantas/genética , ADN Satélite/genética , Evolución Molecular , Phaseolus/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia de Bases , Southern Blotting , Cromosomas de las Plantas/genética , Células Clonales , Hibridación Fluorescente in Situ , Filogenia , Especificidad de la Especie
19.
Plant Biotechnol J ; 14(8): 1777-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26896301

RESUMEN

Pea (Pisum sativum L.) is an important legume worldwide. The importance of pea in arable rotations and nutritional value for both human and animal consumption have fostered sustained production and different studies to improve agronomic traits of interest. Moreover, complete sequencing of the pea genome is currently underway and will lead to the identification of a large number of genes potentially associated with important agronomic traits. Because stable genetic transformation is laborious for pea, virus-induced gene silencing (VIGS) appears as a powerful alternative technology for determining the function of unknown genes. In this work, we present a rapid and efficient viral inoculation method using DNA infectious plasmids of Bean pod mottle virus (BPMV)-derived VIGS vector. Six pea genotypes with important genes controlling biotic and/or abiotic stresses were found susceptible to BPMV carrying a GFP reporter gene and showed fluorescence in both shoots and roots. In a second step, we investigated 37 additional pea genotypes and found that 30 were susceptible to BPMV and only 7 were resistant. The capacity of BPMV to induce silencing of endogenes was investigated in the most susceptible genotype using two visual reporter genes: PsPDS and PsKORRIGAN1 (PsKOR1) encoding PHYTOENE DESATURASE and a 1,4-ß-D-glucanase, respectively. The features of the 'one-step' BPMV-derived VIGS vector include (i) the ease of rub-inoculation, without any need for biolistic or agro-inoculation procedures, (ii) simple cost-effective procedure and (iii) noninterference of viral symptoms with silencing. These features make BPMV the most adapted VIGS vector in pea to make low- to high-throughput VIGS studies.


Asunto(s)
Comovirus/genética , Genómica/métodos , Pisum sativum/genética , Pisum sativum/virología , Comovirus/patogenicidad , Silenciador del Gen , Vectores Genéticos , Genotipo , Oxidorreductasas/genética , Componentes Aéreos de las Plantas/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Raíces de Plantas/virología
20.
Plant Sci ; 242: 351-357, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26566851

RESUMEN

Common bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean. Despite its agronomic importance, genomic resources available in common bean were limited until the recent sequencing of common bean genome (Andean genotype G19833). Besides allowing the annotation of Nucleotide Binding-Leucine Rich Repeat (NB-LRR) encoding gene family, which is the prevalent class of disease R genes in plants, access to the whole genome sequence of common bean can be of great help for intense selection to increase the overall efficiency of crop improvement programs using marker-assisted selection (MAS). This review presents the state of the art of common bean NB-LRR gene clusters, their peculiar location in subtelomeres and correlation with genetically characterized monogenic R genes, as well as how the availability of the whole genome sequence can boost the development of molecular markers for MAS.


Asunto(s)
Resistencia a la Enfermedad/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Phaseolus/genética , Enfermedades de las Plantas/genética , Análisis de Secuencia de ADN/métodos , Productos Agrícolas/genética , Genes de Plantas/genética , Fitomejoramiento/métodos , Selección Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA