Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(7): e17789, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37455970

RESUMEN

Objective: This systematic review and meta-analysis evaluated the effect of the use of available drugs loaded gels used as adjunct to non-surgical periodontal therapy. Methods: Systematic research on PubMed/MEDLINE, Cochrane Central register of Controlled Trials, and Embase databases up to December 2021 was performed. Randomized clinical trials (RCT) which compared the outcomes of scaling and root planing (SRP) + local adjuvant administration (gel) versus SRP + placebo or SRP alone in Humans were included. The primary outcome measures were PPD and CAL changes at 3 months. Results: After articles screening, 77 articles were included and assessed for quality. Then, a meta-analysis was conducted in studies with at least 3 months of follow-up. Clinical improvements were found to be significant for tetracyclines (-0.51 [-0.71;-0.31] p < 0.001), macrolides (-0.71 [-1.04;-0.38] p < 0.001), statins (-0.84 [-0.98;-0.70] p < 0.001), metformin (-1.47 [-1.66;-1.29] p < 0.001) and hyaluronan (-1.61 [-2.28;-0.94] p < 0.001) loaded gels, but non-significant for chlorhexidine (-0.48 [-1.10; 0.14] p = 0.13), metronidazole (-0.50 [-1.20; 0.20] p = 0.16) and bisphosphonates (-0.42 [-1.39; 0.54] p = 0.539) gels. Conclusion: Adjunctive use of drugs loaded gels to non-surgical periodondal treatment could improve PPD reduction at 3 months. However, huge disparities remain when comparing the outcomes of the differents drugs used. Future comparative studies should be considered to determine precisely short and long term benefits of such treatments.

2.
J Periodontol ; 93(11): 1712-1724, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35536914

RESUMEN

BACKGROUND: Porphyromonas gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS: The effect of M101 on GLUT-1, GLUT-3, HIF-1α, and MMP-9 expression, hypoxia, and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000 µM), P. gingivalis (MOI 100), and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay, and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo, and gels containing M101 (1  and 2 g/L) groups through histomorphometry and TRAP (tartrate-resistant acid phosphatase activity assay) assay respectively. The expression of HIF-1α, MMP-9, and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS: M101 downregulated GLUT-1, GLUT-3, HIF-1α, and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis, and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9, and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION: M101 showed promise in resolving hypoxia and associated inflammation-mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated.


Asunto(s)
Periodontitis , Porphyromonas gingivalis , Animales , Ratones , Porphyromonas gingivalis/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Oxígeno/metabolismo , Oxígeno/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Hipoxia/metabolismo , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Inflamación , Cicatrización de Heridas , FN-kappa B/metabolismo
3.
Inflammation ; 45(4): 1752-1764, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35274214

RESUMEN

The aim of this study was to evaluate the potential anti-inflammatory and anti-resorptive effects of lenabasum in the context of Porphyromonas gingivalis (Pg)-induced inflammation. Lenabasum or ajulemic acid (1',1'-dimethylheptyl-THC-11-oic-acid), a synthetic analog of THC-11-oic acid, has already demonstrated anti-inflammatory properties for the treatment of several inflammatory diseases. In vitro, the cytocompatibility of lenabasum was evaluated in human oral epithelial cells (EC), oral fibroblasts and osteoblasts by metabolic activity assay. The effect of lenabasum (5 µM) treatment of Pg-LPS- and P. gingivalis-infected EC on the pro- and anti-inflammatory markers was studied through RTqPCR. In vivo, lenabasum was injected subcutaneously in a P. gingivalis-induced calvarial abscess mouse model to assess its pro-healing effect. Concentrations of lenabasum up to 5 µM were cytocompatible in all cell types. Treatment of Pg-LPS and Pg-infected EC with lenabasum (5 µM; 6 h) reduced the gene expression of TNF-α, COX-2, NF-κB, and RANKL, whereas it increased the expression of IL-10 and resolvin E1 receptor respectively (p < 0.05). In vivo, the Pg-elicited inflammatory lesions' clinical size was significantly reduced by lenabasum injection (30 µM) vs untreated controls (45%) (p < 0.05). Histomorphometric analysis exhibited improved quantity and quality of bone (with reduced lacunae) and significantly reduced calvarial soft tissue inflammatory score in mice treated with lenabasum (p < 0.05). Tartrate-resistant acid phosphatase activity assay (TRAP) also demonstrated decreased osteoclastic activity in the treatment group compared to that in the controls. Lenabasum showed promising anti-inflammatory and pro-resolutive properties in the management of Pg-elicited inflammation, and thus, its potential as adjuvant periodontal treatment should be further investigated.


Asunto(s)
Antiinflamatorios , Porphyromonas gingivalis , Animales , Ratones , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología
4.
Dent Clin North Am ; 66(1): 131-155, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794551

RESUMEN

Current periodontal treatments aim to control bacterial infection and decrease inflammation. To optimize contemporary conventional treatments that present limitations owing to an inability to reach the lesion site, new methods are based on nanomedicine. Nanomedecine allows delivery of host-modulatory drugs or antibacterial molecules at the lesion site in an optimal concentration with decreased toxicity and risk of systemic side effects. Chitosan and polylactic-co-glycolic acid-loaded nanoparticles, carbon quantum dots, and mesoporous silicates open new perspectives in periodontitis management. The potential therapeutic impact of the main nanocarriers is discussed.


Asunto(s)
Quitosano , Nanopartículas , Periodontitis , Antibacterianos/uso terapéutico , Humanos , Nanomedicina , Periodontitis/terapia
5.
J Tissue Eng ; 12: 20417314211041428, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721831

RESUMEN

Control of inflammation is indispensable for optimal oral wound healing and tissue regeneration. Several biomaterials have been used to enhance the regenerative outcomes; however, the biomaterial implantation can ensure an immune-inflammatory response. The interface between the cells and the biomaterial surface plays a critical role in determining the success of soft and hard tissue regeneration. The initial inflammatory response upon biomaterial implantation helps in tissue repair and regeneration, however, persistant inflammation impairs the wound healing response. The cells interact with the biomaterials through extracellular matrix proteins leading to protein adsorption followed by recruitment, attachment, migration, and proliferation of several immune-inflammatory cells. Physical nanotopography of biomaterials, such as surface proteins, roughness, and porosity, is crucial for driving cellular attachment and migration. Similarly, modification of scaffold surface chemistry by adapting hydrophilicity, surface charge, surface coatings, can down-regulate the initiation of pro-inflammatory cascades. Besides, functionalization of scaffold surfaces with active biological molecules can down-regulate pro-inflammatory and pro-resorptive mediators' release as well as actively up-regulate anti-inflammatory markers. This review encompasses various strategies for the optimization of physical, chemical, and biological properties of biomaterial and the underlying mechanisms to modulate the immune-inflammatory response, thereby, promoting the tissue integration and subsequent soft and hard tissue regeneration potential of the administered biomaterial.

6.
Adv Exp Med Biol ; 1341: 67-87, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33159304

RESUMEN

Periodontitis is an infectious inflammatory disease characterized by clinical attachment loss and tooth supporting tissue destruction. As exosomes demonstrated pro-regenerative ability, their use in periodontal treatment has been suggested. The aim of this systematic review is to gather and summarize the most recent data regarding exosomes to determine their potential impact in bone and periodontal regeneration. Electronic databases (Pubmed, Web of Science) were searched up to February 2020. Studies assessing the impact of exosomes administration in experimental bone and periodontal defects have been identified according to PRISMA guidelines. Among the 183 identified articles, 16 met the inclusion criteria and were included in this systematic review. Experimental bone defects were mainly surgically induced with a dental bur or distraction tools. All studies considered bone healing after exosomes administration as the primary outcome. Results showed that mesenchymal stem cells derived exosomes administration promoted bone healing and neovascularization. Nevertheless, a dose-effect relationship was observed. Exosomes administration appears to promote significantly the bone healing and periodontal regeneration. However, only a limited number of studies have been carried out so far and the optimized protocols in this context need to be evaluated.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Periodontitis , Regeneración Ósea , Huesos , Regeneración Tisular Guiada Periodontal , Humanos , Periodontitis/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA