Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Protein Sci ; 33(4): e4950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511503

RESUMEN

Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the ß subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 µM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.


Asunto(s)
Aminoácidos , Escherichia coli , Animales , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Aminoácidos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Mamíferos
2.
Nat Commun ; 13(1): 1513, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314691

RESUMEN

Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic-inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and ¹³C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-site cation dynamics and the structural rigidity of the organic spacers, so providing a molecular-level insight into the design of 2D OIHPs.

3.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34959731

RESUMEN

Here, we describe the synthesis, characterization, and biological activities of a series of 26 new styryl-2(3H)-benzothiazolone analogs of combretastatin-A4 (CA-4). The cytotoxic activities of these compounds were tested in several cell lines (EA.hy926, A549, BEAS-2B, MDA-MB-231, HT-29, MCF-7, and MCF-10A), and the relations between structure and cytotoxicity are discussed. From the series, compound (Z)-3-methyl-6-(3,4,5-trimethoxystyryl)-2(3H)-benzothiazolone (26Z) exhibits the most potent cytotoxic activity (IC50 0.13 ± 0.01 µM) against EA.hy926 cells. 26Z not only inhibits vasculogenesis but also disrupts pre-existing vasculature. 26Z is a microtubule-modulating agent and inhibits a spectrum of angiogenic events in EA.hy926 cells by interfering with endothelial cell invasion, migration, and proliferation. 26Z also shows anti-proliferative activity in CA-4 resistant cells with the following IC50 values: HT-29 (0.008 ± 0.001 µM), MDA-MB-231 (1.35 ± 0.42 µM), and MCF-7 (2.42 ± 0.48 µM). Cell-cycle phase-specific experiments show that 26Z treatment results in G2/M arrest and mitotic spindle multipolarity, suggesting that drug-induced centrosome amplification could promote cell death. Some 26Z-treated adherent cells undergo aberrant cytokinesis, resulting in aneuploidy that perhaps contributes to drug-induced cell death. These data indicate that spindle multipolarity induction by 26Z has an exciting chemotherapeutic potential that merits further investigation.

5.
Sci Rep ; 11(1): 19752, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611227

RESUMEN

Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.


Asunto(s)
COVID-19/patología , Susceptibilidad a Enfermedades , Síndrome Metabólico/patología , Animales , Factores de Coagulación Sanguínea/genética , Factores de Coagulación Sanguínea/metabolismo , COVID-19/complicaciones , COVID-19/virología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dieta Alta en Grasa/veterinaria , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/genética , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/genética , Agregación Plaquetaria , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Sistema Renina-Angiotensina , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Porcinos , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
6.
Eur J Med Chem ; 219: 113435, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892272

RESUMEN

The eukaryotic translation initiation factor 4E (eIF4E) is the master regulator of cap-dependent protein synthesis. Overexpression of eIF4E is implicated in diseases such as cancer, where dysregulation of oncogenic protein translation is frequently observed. eIF4E has been an attractive target for cancer treatment. Here we report a high-resolution X-ray crystal structure of eIF4E in complex with a novel inhibitor (i4EG-BiP) that targets an internal binding site, in contrast to the previously described inhibitor, 4EGI-1, which binds to the surface. We demonstrate that i4EG-BiP is able to displace the scaffold protein eIF4G and inhibit the proliferation of cancer cells. We provide insights into how i4EG-BiP is able to inhibit cap-dependent translation by increasing the eIF4E-4E-BP1 interaction while diminishing the interaction of eIF4E with eIF4G. Leveraging structural details, we designed proteolysis targeted chimeras (PROTACs) derived from 4EGI-1 and i4EG-BiP and characterized these on biochemical and cellular levels. We were able to design PROTACs capable of binding eIF4E and successfully engaging Cereblon, which targets proteins for proteolysis. However, these initial PROTACs did not successfully stimulate degradation of eIF4E, possibly due to competitive effects from 4E-BP1 binding. Our results highlight challenges of targeted proteasomal degradation of eIF4E that must be addressed by future efforts.


Asunto(s)
Compuestos de Bifenilo/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Sitios de Unión , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4E Eucariótico de Iniciación/genética , Humanos , Cinética , Simulación del Acoplamiento Molecular , Profármacos/síntesis química , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteómica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
7.
Angew Chem Int Ed Engl ; 60(25): 13783-13787, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33768661

RESUMEN

Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.


Asunto(s)
Eucariontes/química , Resonancia Magnética Nuclear Biomolecular , Receptores Acoplados a Proteínas G/química , Humanos , Estructura Molecular
8.
Nat Methods ; 16(4): 333-340, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858598

RESUMEN

Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.


Asunto(s)
Isótopos de Carbono/química , Resonancia Magnética Nuclear Biomolecular/instrumentación , Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , ADN/química , Escherichia coli/metabolismo , Flúor/química , Fluorouracilo/química , Campos Magnéticos , Peso Molecular , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/química , Thermoplasma/metabolismo
9.
Angew Chem Int Ed Engl ; 55(36): 10746-50, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27351143

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy has the intrinsic capabilities to investigate proteins in native environments. In general, however, NMR relies on non-natural protein purity and concentration to increase the desired signal over the background. We here report on the efficient and specific hyperpolarization of low amounts of a target protein in a large isotope-labeled background by combining dynamic nuclear polarization (DNP) and the selectivity of protein interactions. Using a biradical-labeled ligand, we were able to direct the hyperpolarization to the protein of interest, maintaining comparable signal enhancement with about 400-fold less radicals than conventionally used. We could selectively filter out our target protein directly from crude cell lysate obtained from only 8 mL of fully isotope-enriched cell culture. Our approach offers effective means to study proteins with atomic resolution in increasingly native concentrations and environments.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Isótopos de Carbono/química , Óxidos N-Cíclicos/química , Marcaje Isotópico , Polietilenglicoles/química , Propanoles/química , Estructura Secundaria de Proteína , Proteínas/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
10.
Nature ; 530(7591): 485-9, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26886795

RESUMEN

Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease.


Asunto(s)
Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Complejo Mediador/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Candida glabrata/genética , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Fluconazol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hidrazinas/farmacocinética , Hidrazinas/farmacología , Cetoconazol/farmacología , Complejo Mediador/química , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacocinética , Tiourea/farmacología , Transactivadores/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
J Am Chem Soc ; 137(47): 14877-86, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26218479

RESUMEN

We report a magic angle spinning (MAS) NMR structure of the drug-resistant S31N mutation of M218-60 from Influenza A. The protein was dispersed in diphytanoyl-sn-glycero-3-phosphocholine lipid bilayers, and the spectra and an extensive set of constraints indicate that M218-60 consists of a dimer of dimers. In particular, ∼280 structural constraints were obtained using dipole recoupling experiments that yielded well-resolved (13)C-(15)N, (13)C-(13)C, and (1)H-(15)N 2D, 3D, and 4D MAS spectra, all of which show cross-peak doubling. Interhelical distances were measured using mixed (15)N/(13)C labeling and with deuterated protein, MAS at ωr/2π = 60 kHz, ω0H/2π = 1000 MHz, and (1)H detection of methyl-methyl contacts. The experiments reveal a compact structure consisting of a tetramer composed of four transmembrane helices, in which two opposing helices are displaced and rotated in the direction of the membrane normal relative to a four-fold symmetric arrangement, yielding a two-fold symmetric structure. Side chain conformations of the important gating and pH-sensing residues W41 and H37 are found to differ markedly from four-fold symmetry. The rmsd of the structure is 0.7 Å for backbone heavy atoms and 1.1 Å for all heavy atoms. This two-fold symmetric structure is different from all of the previous structures of M2, many of which were determined in detergent and/or with shorter constructs that are not fully active. The structure has implications for the mechanism of H(+) transport since the distance between His and Trp residues on different helices is found to be short. The structure also exhibits two-fold symmetry in the vicinity of the binding site of adamantyl inhibitors, and steric constraints may explain the mechanism of the drug-resistant S31N mutation.


Asunto(s)
Proteínas de la Matriz Viral/química , Dimerización , Membrana Dobles de Lípidos , Conformación Proteica
12.
J Am Chem Soc ; 136(32): 11308-10, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24937763

RESUMEN

Structural characterization of membrane proteins and other large proteins with NMR relies increasingly on perdeuteration combined with incorporation of specifically protonated amino acid moieties, such as methyl groups of isoleucines, valines, or leucines. The resulting proton dilution reduces dipolar broadening producing sharper resonance lines, ameliorates spectral crowding, and enables measuring of crucial distances between and to methyl groups. While incorporation of specific methyl labeling is now well established for bacterial expression using suitable precursors, corresponding methods are still lacking for cell-free expression, which is often the only choice for producing labeled eukaryotic membrane proteins in mg quantities. Here we show that we can express methyl-labeled human integral membrane proteins cost-effectively by cell-free expression based of crude hydrolyzed ILV-labeled OmpX inclusion bodies. These are obtained in Escherichia coli with very high quantity and represent an optimal intermediate to channel ILV precursors into the eukaryotic proteins.


Asunto(s)
Sistema Libre de Células , Proteínas de la Membrana/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Isótopos de Carbono/química , Análisis Costo-Beneficio , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Hidrógeno/química , Hidrolasas/metabolismo , Hidrólisis , Cuerpos de Inclusión/metabolismo , Isoleucina/química , Leucina/química , Espectroscopía de Resonancia Magnética , Micelas , Valina/química
13.
J Membr Biol ; 247(9-10): 957-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24858950

RESUMEN

While amphipols have been proven useful for refolding of seven transmembrane helical (7-TM) proteins including G-protein-coupled receptors (GPCRs) and it could be shown that an amphipol environment is in principle suitable for NMR structural studies of the embedded protein, high-resolution NMR insights into amphipol refolded and isotopically labeled GPCRs are still very limited. Here we report on the recent progress toward NMR structural studies of the melanocortin-2 and -4 receptors, two class A GPCRs which so far have not been reported to be incorporated into an amphipol environment. Making use of the established 7-TM protein bacteriorhodopsin (BR) we initially tested and optimized amphipol refolding conditions. Most promising conditions were transferred to the refolding of the two melanocortin receptors. Analytical-scale refolding experiments on the melanocortin-2 receptor show very similar behavior to the results obtained on BR. Using cell-free protein expression we could generate sufficient amounts of isotopically labeled bacteriorhodopsin as well as melanocortin-2 and -4 receptors for an initial NMR analysis. Upscaling of the amphipol refolding protocol to protein amounts needed for NMR structural studies was, however, not straightforward and impeded detailed NMR insights for the two GPCRs. While well-resolved and dispersed NMR spectra could only be obtained for bacteriorhodopsin, a comparison of NMR data recorded on the melanocortin-4 receptor in SDS and in an amphipol environment indicates that amphipol refolding induces larger structural modifications in the receptor.


Asunto(s)
Algoritmos , Cromatografía en Gel/métodos , Espectroscopía de Resonancia Magnética/métodos , Polímeros/química , Propilaminas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestructura , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Conformación Proteica
14.
Sci Rep ; 4: 3664, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24441171

RESUMEN

Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects.


Asunto(s)
Factor de Transcripción TFIIB/metabolismo , Acetilación , Animales , Sitios de Unión , Ciclo Celular/genética , Línea Celular , Conjuntos de Datos como Asunto , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genes Letales , Genoma Humano , Herpesvirus Humano 1/genética , Humanos , Especificidad de Órganos/genética , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIB/deficiencia , Factor de Transcripción TFIIB/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Transcriptoma
15.
Structure ; 21(3): 394-401, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23415558

RESUMEN

Selecting a suitable membrane-mimicking environment is of fundamental importance for the investigation of membrane proteins. Nonconventional surfactants, such as amphipathic polymers (amphipols) and lipid bilayer nanodiscs, have been introduced as promising environments that may overcome intrinsic disadvantages of detergent micelle systems. However, structural insights into the effects of different environments on the embedded protein are limited. Here, we present a comparative study of the heptahelical membrane protein bacteriorhodopsin in detergent micelles, amphipols, and nanodiscs. Our results confirm that nonconventional environments can increase stability of functional bacteriorhodopsin, and demonstrate that well-folded heptahelical membrane proteins are, in principle, accessible by solution-NMR methods in amphipols and phospholipid nanodiscs. Our data distinguish regions of bacteriorhodopsin that mediate membrane/solvent contacts in the tested environments, whereas the protein's functional inner core remains almost unperturbed. The presented data allow comparing the investigated membrane mimetics in terms of NMR spectral quality and thermal stability required for structural studies.


Asunto(s)
Bacteriorodopsinas/química , Escherichia coli/química , Halobacterium salinarum/química , Proteínas de la Membrana/química , Membranas Artificiales , Fracciones Subcelulares/metabolismo , Bacteriorodopsinas/genética , Bacteriorodopsinas/metabolismo , Medios de Cultivo , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Micelas , Modelos Moleculares , Imitación Molecular , Resonancia Magnética Nuclear Biomolecular , Fosfolípidos/química , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad , Fracciones Subcelulares/química
16.
Mol Genet Genomic Med ; 1(2): 71-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24498604

RESUMEN

Exome sequencing was used as a diagnostic tool in a Roma/Gypsy family with three subjects (one deceased) affected by lissencephaly with cerebellar hypoplasia (LCH), a clinically and genetically heterogeneous diagnostic category. Data analysis identified high levels of unreported inbreeding, with multiple rare/novel "deleterious" variants occurring in the homozygous state in the affected individuals. Step-wise filtering was facilitated by the inclusion of parental samples in the analysis and the availability of ethnically matched control exome data. We identified a novel mutation, p.Asp487Tyr, in the VLDLR gene involved in the Reelin developmental pathway and associated with a rare form of LCH, the Dysequilibrium Syndrome. p.Asp487Tyr is the third reported missense mutation in this gene and the first example of a change affecting directly the functionally crucial ß-propeller domain. An unexpected additional finding was a second unique mutation (p.Asn494His) with high scores of predicted pathogenicity in KCNV2, a gene implicated in a rare eye disorder, retinal cone dystrophy type 3B. This result raised diagnostic and counseling challenges that could be resolved through mutation screening of a large panel of healthy population controls. The strategy and findings of this study may inform the search for new disease mutations in the largest European genetic isolate.

17.
Nucleic Acids Res ; 40(20): 10116-23, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22904068

RESUMEN

The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.


Asunto(s)
ADN/química , Factor de Transcripción YY1/metabolismo , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , Células HeLa , Humanos , Simulación de Dinámica Molecular , Plasminógeno/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Unión Proteica
18.
Nat Chem Biol ; 7(11): 810-7, 2011 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21946276

RESUMEN

Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was dependent on backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1,024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (molecular mass = 755 Da) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Asunto(s)
Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacocinética , Animales , Disponibilidad Biológica , Química Farmacéutica , Técnicas Químicas Combinatorias , Simulación por Computador , Descubrimiento de Drogas/métodos , Masculino , Metilación , Estructura Molecular , Péptidos Cíclicos/química , Ratas , Relación Estructura-Actividad
19.
PLoS One ; 6(5): e19800, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21625483

RESUMEN

Trinucleotide repeats sequences (TRS) represent a common type of genomic DNA motif whose expansion is associated with a large number of human diseases. The driving molecular mechanisms of the TRS ongoing dynamic expansion across generations and within tissues and its influence on genomic DNA functions are not well understood. Here we report results for a novel and notable collective breathing behavior of genomic DNA of tandem TRS, leading to propensity for large local DNA transient openings at physiological temperature. Our Langevin molecular dynamics (LMD) and Markov Chain Monte Carlo (MCMC) simulations demonstrate that the patterns of openings of various TRSs depend specifically on their length. The collective propensity for DNA strand separation of repeated sequences serves as a precursor for outsized intermediate bubble states independently of the G/C-content. We report that repeats have the potential to interfere with the binding of transcription factors to their consensus sequence by altered DNA breathing dynamics in proximity of the binding sites. These observations might influence ongoing attempts to use LMD and MCMC simulations for TRS-related modeling of genomic DNA functionality in elucidating the common denominators of the dynamic TRS expansion mutation with potential therapeutic applications.


Asunto(s)
ADN/genética , ADN/metabolismo , Neoplasias/genética , Factores de Transcripción/metabolismo , Repeticiones de Trinucleótidos/genética , Sitios de Unión , Simulación por Computador , Ensayo de Cambio de Movilidad Electroforética , Células HeLa , Humanos , Cadenas de Markov , Regiones Promotoras Genéticas
20.
BMC Bioinformatics ; 11: 604, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21172036

RESUMEN

BACKGROUND: DNA instability profiles have been used recently for predicting the transcriptional start site and the location of core promoters, and to gain insight into promoter action. It was also shown that the use of these profiles can significantly improve the performance of motif finding programs. RESULTS: In this work we introduce a new method for computing DNA instability profiles. The model that we use is a modified Ising-type model and it is implemented via statistical mechanics. Our linear time algorithm computes the profile of a 10,000 base-pair long sequence in less than one second. The method we use also allows the computation of the probability that several consecutive bases are unpaired simultaneously. This is a feature that is not available in other linear-time algorithms. We use the model to compare the thermodynamic trends of promoter sequences of several genomes. In addition, we report results that associate the location of local extrema in the instability profiles with the presence of core promoter elements at these locations and with the location of the transcription start sites (TSS). We also analyzed the instability scores of binding sites of several human core promoter elements. We show that the instability scores of functional binding sites of a given core promoter element are significantly different than the scores of sites with the same motif occurring outside the functional range (relative to the TSS). CONCLUSIONS: The time efficiency of the algorithm and its genome-wide applications makes this work of broad interest to scientists interested in transcriptional regulation, motif discovery, and comparative genomics.


Asunto(s)
Biología Computacional/métodos , ADN/química , Regiones Promotoras Genéticas , Algoritmos , Sitios de Unión/genética , Humanos , Modelos Estadísticos , Desnaturalización de Ácido Nucleico , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA