Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 190: 170-177, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478799

RESUMEN

Designing an environmentally benign bio-adsorbent for the removal of heavy metal ions from aqueous medium was a sustainable strategy to ensure water safety. Herein, three-dimensional macroscopic aminosilyated nanocellulose aerogels (APTMS-modified TO-NFC) for the removal of heavy metal ions in water were successfully synthesized from bamboo-derived TEMPO-oxidized nanofibrillated cellulose (TO-NFC) and aminopropyltrimethoxysilane (APTMs) via a facile freeze-drying process. Owing to a relatively high BET surface area (129.32 m2 g-1), high porosity (99.14%) as well as high substitution degree of amino groups (0.41), the resulting APTMS-modified TO-NFC aerogel exhibited good adsorption capacity of 99.0, 124.5, and 242.1 mg g-1 for Cu2+, Cd2+ and Hg2+, respectively. Furthermore, the crosslinked and three-dimensionally porous architecture imparted it with relatively high compression strength, good excellent stability in water, and ease of recyclability from water after the usage. The pH value of the solution had a great influence on adsorption efficiency of the aerogel adsorbent, and optimal adsorption efficiency could be achieved at pH 3-7. Thermodynamic parameters suggested the spontaneous and endothermic nature of adsorption process. This work provides a facile method for preparing sustainable bio-adsorbent for effective heavy metal ions removal from aqueous medium.


Asunto(s)
Celulosa/química , Geles/química , Metales Pesados/aislamiento & purificación , Nanopartículas/química , Silanos/química , Adsorción , Fuerza Compresiva , Concentración de Iones de Hidrógeno , Iones , Cinética , Estrés Mecánico , Temperatura
2.
Carbohydr Polym ; 174: 841-848, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821139

RESUMEN

A composite cryogel was prepared from quaternized nanofibrillated cellulose (Q-NFC) and chitosan (CS) through a combination of freeze-drying and cross-linking with epichlorohydrin. The specific surface area of the composite cryogel was approximately two times that of Q-NFC cryogel. And the composite cryogel exhibited superior adsorption properties of anionic dyes than either the Q-NFC or CS cryogel controls. The adsorption isotherm well fitted the Langmuir model with the maximum theoretical adsorption capacity up to 473.9mg/g. The adsorption behavior was found to follow pseudo second-order kinetic model, indicating the chemisorption nature. Notably, the composite cryogel could effectively separate the cationic dye from anionic one. Furthermore, the composite cryogel displayed excellent reusability, evidenced by the removal percentage of Acid red 88 still as high as 96% even after five adsorption-desorption cycles. These advantages would make it an environmentally friendly candidate for the use in the separation and efficient removal of anionic dyes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA