Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447330

RESUMEN

The nuclear liver X receptors (LXRα/ß) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/ß- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.


Asunto(s)
Enfermedad de Alzheimer , Algas Marinas , Ratones , Animales , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , PPAR alfa/genética , Espectrometría de Masas en Tándem , Receptores Citoplasmáticos y Nucleares/genética , Colesterol/metabolismo , Ácidos Grasos/metabolismo
2.
J Food Sci ; 88(6): 2411-2424, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167001

RESUMEN

For heteromorphic algae with alternating generations, the thallus and gametophyte phases are different morphologies in free-living life history. The thalli are popular used as traditional vegetables and herbal drugs, whereas the gametophyte phases are little involved. To better understand the functional lipids in the gametophyte phase of three commercial kelps, Saccharina japonica, Undaria pinnatifida, and Costaria costata, the contents of total lipids (TLs), fatty acid (FA) profiles, and transcriptomic analysis were performed. For the studied kelps, the TL contents in gametophyte phase were always almost twice more than those in the thallus, and the kelp species, their life stage, and the gender were critical factors affecting lipid accumulation. The gametophyte phases of U. pinnatifida and C. costata were rich in essential FA C18:2 n - 6 and C18:3 n - 3. The S. japonica gametophyte phase contained abundant C20:5 n - 3 and C18:4 n - 3, possessed an ideal ratio of n - 6/n - 3 polyunsaturated fatty acid below 1.0, and was supported by the transcriptome data which showed that the key sjD12/15 (n - 3) gene of gametophyte partially upregulated than sporophyte. The results suggested that S. japonica gametophyte phase was the worthiest of further development and utilization as a functional food. PRACTICAL APPLICATION: It is the first report on the fatty acid characteristics of three gametophyte phases of Saccharina japonica, Undaria pinnatifida, and Costaria costata and find that the S. japonica was worthy of further development and utilization as a functional food owing to its satisfactory fatty acid composition.


Asunto(s)
Ácidos Grasos Omega-3 , Kelp , Laminaria , Phaeophyceae , Undaria , Células Germinativas de las Plantas , Ácidos Grasos , Ácidos Grasos Esenciales , Suplementos Dietéticos
3.
Mar Drugs ; 20(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323500

RESUMEN

Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8-7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25-100 µg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.


Asunto(s)
Ciclofosfamida/toxicidad , Hematopoyesis/efectos de los fármacos , Agonistas Mieloablativos/toxicidad , Polisacáridos/farmacología , Sustancias Protectoras/farmacología , Sargassum , Animales , Biomarcadores/sangre , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Humanos , Células K562 , Recuento de Leucocitos , Lipidómica , Ratones , Neutrófilos/efectos de los fármacos , Recuento de Plaquetas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA