RESUMEN
Porcine skin-derived stem cells (pSDSCs) are a type of adult stem cells (ASCs) that retain the ability to self-renew and differentiate. Currently, pSDSCs research has entered an intense period of development; however there has been no research regarding methods of cryopreservation. In this paper, we explored an efficient cryopreservation method for pSDSCs. Our results demonstrated that cryopreserving 50 µm diameter pSDSCs aggregates resulted in a lower apoptosis rate and a greater ability to proliferate to form larger spherical cell aggregates than during single-cell cryopreservation. To further optimize the cryopreservation method, we added different concentrations of melatonin (N-acetyl-5-methoxytryptamine, MLT) and trehalose (d-trehalose anhydrous, TRE) to act as cryoprotectants (CPAs) for the pSDSCs. After comparative experiments, we found that the cryopreservation efficiency of 50 mM TRE was superior. Further experiments demonstrated that the reason why 50 mM TRE improved cryopreservation efficiency was that it reduced the intracellular oxidative stress and mitochondrial damage caused by cryopreservation. Taken together, our results suggest that cryopreserving 50 µm diameter pSDSCs aggregates in F12 medium with 10% dimethyl sulfoxide (DMSO) and 50 mM TRE promotes the long-term storage of pSDSCs.